1 | ||
Editor: Bill Page
Time: 2010/03/18 14:27:55 GMT-7 |
||
Note: new |
changed: - \begin{spad} )abbrev domain MYPLEX MyComplex ++ Description: ++ Based on \spadtype{Complex(R)}, ++ \spadtype{MyComplex(R)} creates the domain of elements of the form ++ \spad{a + b * i} where \spad{a} and b come from the ring R, ++ and i is a new element such that \spad{i^2 = -1}. MyComplex(R:CommutativeRing): ComplexCategory(R) with if R has OpenMath then OpenMath == add Rep := Record(real:R, imag:R) if R has OpenMath then writeOMComplex(dev: OpenMathDevice, x: %): Void == OMputApp(dev) OMputSymbol(dev, "complex1", "complex__cartesian") OMwrite(dev, real x) OMwrite(dev, imag x) OMputEndApp(dev) OMwrite(x: %): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML) OMputObject(dev) writeOMComplex(dev, x) OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(x: %, wholeObj: Boolean): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML) if wholeObj then OMputObject(dev) writeOMComplex(dev, x) if wholeObj then OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(dev: OpenMathDevice, x: %): Void == OMputObject(dev) writeOMComplex(dev, x) OMputEndObject(dev) OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void == if wholeObj then OMputObject(dev) writeOMComplex(dev, x) if wholeObj then OMputEndObject(dev) 0 == [0, 0] 1 == [1, 0] zero? x == zero?(x.real) and zero?(x.imag) -- one? x == one?(x.real) and zero?(x.imag) one? x == ((x.real) = 1) and zero?(x.imag) coerce(r:R):% == [r, 0] complex(r, i) == [r, i] real x == x.real imag x == x.imag x + y == [x.real + y.real, x.imag + y.imag] -- by re-defining this here, we save 5 fn calls x:% * y:% == [x.real * y.real - x.imag * y.imag, x.imag * y.real + y.imag * x.real] -- here we save nine! if R has IntegralDomain then _exquo(x:%, y:%) == -- to correct bad defaulting problem zero? y.imag => x exquo y.real x * conjugate(y) exquo norm(y) \end{spad} \begin{axiom} myType := MyComplex MyComplex Integer m := complex(complex(1,2)$MyComplex(Integer),complex(3,4)$MyComplex(Integer))$myType mr := real(m*m) imag(mr) \end{axiom}
(1) -> <spad>
)abbrev domain MYPLEX MyComplex ++ Description: ++ Based on \spadtype{Complex(R)},++ \spadtype{MyComplex(R)} creates the domain of elements of the form ++ \spad{a + b * i} where \spad{a} and b come from the ring R, ++ and i is a new element such that \spad{i^2 = -1}. MyComplex(R:CommutativeRing): ComplexCategory(R) with if R has OpenMath then OpenMath == add Rep := Record(real:R, imag:R)
if R has OpenMath then writeOMComplex(dev: OpenMathDevice,x: %): Void == OMputApp(dev) OMputSymbol(dev, "complex1", "complex__cartesian") OMwrite(dev, real x) OMwrite(dev, imag x) OMputEndApp(dev)
OMwrite(x: %): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String,OMencodingXML) OMputObject(dev) writeOMComplex(dev, x) OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s
OMwrite(x: %,wholeObj: Boolean): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML) if wholeObj then OMputObject(dev) writeOMComplex(dev, x) if wholeObj then OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s
OMwrite(dev: OpenMathDevice,x: %): Void == OMputObject(dev) writeOMComplex(dev, x) OMputEndObject(dev)
OMwrite(dev: OpenMathDevice,x: %, wholeObj: Boolean): Void == if wholeObj then OMputObject(dev) writeOMComplex(dev, x) if wholeObj then OMputEndObject(dev)
0 == [0,0] 1 == [1, 0] zero? x == zero?(x.real) and zero?(x.imag) -- one? x == one?(x.real) and zero?(x.imag) one? x == ((x.real) = 1) and zero?(x.imag) coerce(r:R):% == [r, 0] complex(r, i) == [r, i] real x == x.real imag x == x.imag x + y == [x.real + y.real, x.imag + y.imag] -- by re-defining this here, we save 5 fn calls x:% * y:% == [x.real * y.real - x.imag * y.imag, x.imag * y.real + y.imag * x.real] -- here we save nine!
if R has IntegralDomain then _exquo(x:%,y:%) == -- to correct bad defaulting problem zero? y.imag => x exquo y.real x * conjugate(y) exquo norm(y)</spad>
Compiling FriCAS source code from file /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/4777213760436474437-25px001.spad using old system compiler. MYPLEX abbreviates domain MyComplex ------------------------------------------------------------------------ initializing NRLIB MYPLEX for MyComplex compiling into NRLIB MYPLEX ****** Domain: R already in scope augmenting R: (OpenMath) compiling local writeOMComplex : (OpenMathDevice,%) -> Void Time: 0.03 SEC.
compiling exported OMwrite : % -> String ****** comp fails at level 2 with expression: ****** error in function OMwrite
(SEQ (|:=| (|:| |s| (|String|)) "") | << | (|:=| |sp| ((|Sel| |Lisp| OM-STRINGTOSTRINGPTR) |s|)) | >> | (|:=| (|:| |dev| (|OpenMathDevice|)) (|OMopenString| (|pretend| |sp| (|String|)) |OMencodingXML|)) (|OMputObject| |dev|) (|writeOMComplex| |dev| |x|) (|OMputEndObject| |dev|) (|OMclose| |dev|) (|:=| |s| (|pretend| ((|Sel| |Lisp| OM-STRINGPTRTOSTRING) |sp|) (|String|))) (|exit| 1 |s|)) ****** level 2 ****** $x:= (:= sp ((Sel Lisp OM-STRINGTOSTRINGPTR) s)) $m:= NoValueMode $f:= ((((|s| # #) (|x| # #) (|writeOMComplex| #)) ((|writeOMComplex| #) (|coerce| #) (|void| #) (|$DomainsInScope| # # #) ...)))
>> Apparent user error: No mode in assignment to: sp
myType := MyComplex MyComplex Integer
MyComplex is an unknown constructor and so is unavailable. Did you mean to use -> but type something different instead?