|
|
last edited 7 years ago by test1 |
1 2 3 4 5 6 7 8 9 10 | ||
Editor: kratt6
Time: 2007/12/20 02:58:10 GMT-8 |
||
Note: more details |
changed: -integrate(sin(x)**2,x=0..1) returns "potentialPole". This doesn't look right. We have integrate(sin(x)**2,x)=(t-cos(t)sin(t))/2; no pole. \begin{axiom} integrate(sin(x)**2,x=0..1) \end{axiom} returns "potentialPole". This doesn't look right. We have \begin{axiom} integrate(sin(x)**2,x) \end{axiom} and \begin{axiom} integrate(sin(x)**2,x=0..1, "noPole") \end{axiom} There is no pole.
axiomintegrate(sin(x)**2,x=0..1)
![]() | (1) |
returns "potentialPole". This doesn't look right. We have
axiomintegrate(sin(x)**2,x)
![]() | (2) |
and
axiomintegrate(sin(x)**2,x=0..1, "noPole")
![]() | (3) |
There is no pole.