LUDecomposition (LUD) LU decomposition for ordinary matrices. fricas (1) -> )expose LUDecomposition
Type: Matrix(Polynomial(Integer))
fricas diagProduct(x) == reduce(*, Type: Void
fricas B:=LUDecomp A; Type: Record(LU: Matrix(Fraction(Polynomial(Integer))),
fricas B.LU
Type: Matrix(Fraction(Polynomial(Integer)))
fricas B.Perm
Type: Vector(Integer)
fricas B.Pivots
Type: List(Fraction(Polynomial(Integer)))
fricas diagProduct(B.LU)=determinant A fricas Compiling function diagProduct with type Matrix(Fraction(Polynomial(
Integer))) -> Fraction(Polynomial(Integer))
Type: Equation(Fraction(Polynomial(Integer)))
fricas %::Boolean
Type: Boolean
|


![\label{eq4}\begin{array}{@{}l}
\displaystyle
\left[{\frac{{{\left({{a_{11}}\ {a_{22}}}-{{a_{12}}\ {a_{21}}}\right)}\ {a_{33}}}+{{\left(-{{a_{11}}\ {a_{23}}}+{{a_{13}}\ {a_{21}}}\right)}\ {a_{32}}}+{{\left({{a_{12}}\ {a_{23}}}-{{a_{13}}\ {a_{22}}}\right)}\ {a_{31}}}}{{{a_{11}}\ {a_{22}}}-{{a_{12}}\ {a_{21}}}}}, \right.
\
\
\displaystyle
\left.\:{\frac{{{a_{11}}\ {a_{22}}}-{{a_{12}}\ {a_{21}}}}{a_{1
1}}}, \:{a_{11}}\right]
\label{eq4}\begin{array}{@{}l}
\displaystyle
\left[{\frac{{{\left({{a_{11}}\ {a_{22}}}-{{a_{12}}\ {a_{21}}}\right)}\ {a_{33}}}+{{\left(-{{a_{11}}\ {a_{23}}}+{{a_{13}}\ {a_{21}}}\right)}\ {a_{32}}}+{{\left({{a_{12}}\ {a_{23}}}-{{a_{13}}\ {a_{22}}}\right)}\ {a_{31}}}}{{{a_{11}}\ {a_{22}}}-{{a_{12}}\ {a_{21}}}}}, \right.
\
\
\displaystyle
\left.\:{\frac{{{a_{11}}\ {a_{22}}}-{{a_{12}}\ {a_{21}}}}{a_{1
1}}}, \:{a_{11}}\right]](images/6472554339669236970-16.0px.png)
