
Larch/Aldor—A Larch BISL
For AXIOM and Aldor

A thesis submitted to the

UNIVERSITY OF ST ANDREWS

for the degree of

DOCTOR OF PHILOSOPHY

by

Martin N Dunstan

School of Mathematical and Computational Sciences

University of St Andrews

September 1999

Abstract

Computer algebra systems (CAS) such asaxi.om and Maple are programs that have been

designed to help humans to solve algebraic problems using symbolic methods. They are

often large systems containing libraries developed by different people at different times,

and they generally provide an object language to allow other users to extend the system.

However, even though the library components may be implemented correctly, there is a

risk that they may not be used correctly by the user or other developers. For example,

pre-conditions that are not documented or are ignored may lead to inappropriate usage and

subsequent failures may have disastrous results.

In this thesis we investigate the use of lightweight formal methods and verification condi-

tions (VCs) to help improve the reliability of components constructed within a computer

algebra system. We follow the Larch approach to formal methods and have designed a

new behavioural interface specification language (BISL) for use with Aldor: the compiled

extension language ofaxi.om and a fully-featured programming language in its own right.

We describe our idea of lightweight formal methods, present a design for a lightweight

verification condition generator and review our implementation of a prototype verification

condition generator for Larch/Aldor.

We also describe three case studies that we have undertaken during this research. The

first examines the use of VDM reification techniques to derive efficientaxi.om programs

for computing the strengths of spectral lines of hydrogen-like atoms. The other two case

studies examine the effectiveness of our lightweight verification techniques and identify

issues which affect their use.

I, Martin Dunstan, hereby certify that this thesis, which is approximately 60,000 words in

length, has been written by me, that it is the record of work carried out by me, and that it

has not been submitted in any previous application for a higher degree.

(to be filled in)
date

(to be filled in)
signature of candidate

I was admitted as a research student in October1995 and as a candidate for the degree

of Doctor of Philosophy in October1996; the higher study for which this is a record was

carried out in the University of St Andrews between1995 and1999.

(to be filled in)
date

(to be filled in)
signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu-

lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews

and that the candidate is qualified to submit this thesis in application for that degree.

(to be filled in)
date

(to be filled in)
signature of supervisor

In submitting this thesis to the University of St. Andrews I understand that I am giving

permission for it to be made available for use in accordance with the regulations of the

University Library for the time being in force, subject to any copyright vested in the work

not being affected thereby. I also understand that the title and abstract will be published,

and that a copy of the work may be made and supplied to anybona fidelibrary or research

worker.

(to be filled in)
date

(to be filled in)
signature of candidate

Acknowledgements

I would like to thank Ursula Martin for all the encouragement and guidance that she has

given to me throughout this research. I must also thank Andrew Adams, James Davenport,

Tony Davie, Mike Dewar, Hanne Gottliebsen, Tom Kelsey, Steve Linton, Duncan Shand

and Simon Thompson for many interesting discussions. Thanks also to Helen and Joy.

Finally thanks to my wife Vivienne—although she has endured a lot during the past few

years, she has always been there for me. I am grateful for her support and her penetrating

questions, and I am always amazed by her fortitude and determination never to give in.

Contents

1 Introduction 1

1.1 Aims and motivation .1

1.2 Results and achievements .3

1.3 Context of this research .5

1.3.1 Program specification .6

1.3.2 Using specifications .7

1.3.3 Larch .9

1.3.4 Computer algebra systems .11

1.3.5 axi.om .12

1.3.6 Aldor .13

1.4 Related work .15

1.4.1 Program specification and program checking15

1.4.2 Computer algebra and formal methods16

1.5 Thesis structure .17

2 Motivation 19

2.1 Problems with large software systems .19

2.2 Error prevention .21

2.2.1 Error prevention by language design21

2.2.2 Program specification .24

2.2.3 Reification .25

2.2.4 Program derivation and synthesis26

2.2.5 Cleanroom .26

2.3 Error detection .27

2.3.1 Runtime assertions .27

2.3.2 Syntax checking .28

i

ii

2.3.3 Type checking .28

2.3.4 Data and control-flow analysis .30

2.3.5 Symbolic execution .32

2.3.6 Procedural interface checks .33

2.3.7 Verification condition generation33

2.4 Relation to Aldor and this thesis .35

3 Reification for computer algebra systems—a case study 37

3.1 Hydrogenic oscillator strengths .39

3.1.1 Weighted mean line strength .39

3.1.2 Solving the integral .41

3.1.3 Symbolic mathematics using a computer algebra system42

3.1.4 Summary .44

3.2 Implementing the abstract specification44

3.2.1 From abstract specification to interface specification45

3.2.2 Constructing an implementation46

3.2.3 Checking for satisfaction .47

3.2.4 Summary .50

3.3 Towards more efficient implementations50

3.3.1 Reification and implementation51

3.3.2 Satisfaction .51

3.3.3 Further reification .52

3.3.4 More satisfaction .53

3.3.5 Summary .54

3.4 An alternative direction .54

3.4.1 Specification matching .55

3.4.2 Reification again .55

3.4.3 Summary .57

3.5 Summary and issues arising .57

3.5.1 Implementing real numbers .59

3.5.2 Reification of computer algebra programs59

3.5.3 Scaling up to larger programs .60

3.5.4 Other implementation languages60

3.5.5 Limitations of computer algebra systems61

iii

4 Design of Larch/Aldor 62

4.1 Introduction .62

4.1.1 A review of existing Larch BISLs63

4.1.2 Requirements and design issues68

4.2 Syntax and semantics of Larch/Aldor .71

4.2.1 Functions .71

4.2.2 Loops .75

4.2.3 Categories .76

4.2.4 Domains .77

4.2.5 Functions as parameters .77

4.2.6 Design issues .78

4.3 Larch/Aldor store model .80

4.3.1 Overview .80

4.3.2 Unsorted store model .82

4.3.3 Sorted store model .84

4.3.4 Sorted projection .86

4.3.5 Using the model .90

4.3.6 Issues .91

4.3.7 Conclusions .93

4.3.8 Future work .93

4.4 Conclusions .94

5 Lightweight VC Generation 96

5.1 Introduction .96

5.2 Techniques .97

5.2.1 Background .97

5.2.2 The traditional approach .98

5.2.3 The lightweight approach .100

5.2.4 Multiple execution paths .101

5.2.5 Using verification conditions .102

5.3 A prototype lightweight VC generator .104

5.3.1 Design decisions .104

5.3.2 Current status .107

5.3.3 Implementation details .110

5.3.4 Lessons learned .115

iv

5.3.5 Conclusions and future work .117

5.4 Summary .119

6 Case studies in Larch/Aldor 120

6.1 Quicksort .120

6.1.1 Background theory .121

6.1.2 Quicksort for lists .125

6.1.3 Verification conditions .125

6.1.4 Summary .128

6.2 Number scanning .129

6.2.1 Introduction .130

6.2.2 Verification conditions .130

6.2.3 Summary .134

6.3 Conclusions .135

7 Conclusions 138

7.1 Software development for CAS .138

7.1.1 Reification .139

7.1.2 Proving properties of specifications140

7.1.3 Annotating source code .140

7.1.4 Verification conditions .140

7.2 Contributions of this research .141

7.3 Future work .142

A Introducing Aldor 144

A.1 Categories .144

A.2 Domains .146

A.3 Functions .148

A.4 Other features of Aldor .149

A.4.1 Generators (coroutines) .149

A.4.2 Fluid variables .151

A.4.3 Post factoextensions .152

B Reification—source code 154

B.1 Level 1 implementation .155

B.2 Level 2 implementation .156

v

B.3 Level 3 implementation .157

B.4 Laplace 1 implementation .158

B.5 Laplace 2 implementation .159

C VC generation—source code 160

C.1 Annotating programs .160

C.2 VC generation .163

Bibliography 166

Chapter 1

Introduction

1.1 Aims and motivation

Our motivation for this research stems from the potential unreliability of computer algebra

systems (CAS) and the perceived need to utilise formal methods to increase their reliabil-

ity, and also the reliability of extensions that have been constructed using CAS libraries.

We assume that most, if not all, of the components of a CAS perform their tasks correctly

otherwise users would be unlikely to continue using such systems. We assume that these

components have been implemented correctly and are comforted by the fact that the math-

ematics which lies behind them is likely to have been studied and reviewed extensively in

the literature; some algorithms may even pre-date the electronic computer. However, even

if the CAS library functions are all correct, the programs which are built from them might

not be. For example, a user or developer might select the wrong function for a task which

may cause unexpected and potentially disastrous failures.

Formal methods can help to deal with mistakes in CAS in two ways. Firstly formal methods

techniques can be used to provide runtime support for calculations made by the CAS. This

may involve interactions between the CAS and an automated theorem prover, the latter

using specialised search techniques to attempt to prove or disprove statements that are

presented to it. Secondly, formal methods can be used in a software engineering context by

providing a way to construct more reliable CAS software by preventing errors from being

introduced during the design and implementation phases. These formal methods techniques

1

CHAPTER 1. INTRODUCTION 2

may be able to help the user to discover errors at any point in the lifetime of the software

and provide a reliable way of ensuring that any fixes do not introduce other mistakes. It is

the software engineering approach that we concentrate on in this thesis.

Computer algebra systems are big and complicated, often comprising of a large corpus of

source code that was created by different people at different times. As a result we believe

that a fully rigorous formal verification of each line of code of a state-of-the-art CAS such

as Maple [13] oraxi.om [48] is infeasible.

We propose a lightweight approach where an annotation language is used to define be-

havioural interface specifications (BISLs) [37] and where the annotations are used to sup-

port the analysis of function applications and procedure calls. Such analysis may generate

a set of verification conditions (VCs)—statements which, if valid, guarantee that the pro-

gram satisfies its specification. We leave it to the user to decide what to be done with the

VCs—some may be trivial and could be proven correct automatically but others may be

too complex for current theorem proving technology. The user may wish to apply specialist

knowledge to convince themselves that the verification conditions are valid, or may simply

record them as extra conditions on the use of their program. There may be conditions which

are obviously false and do not need detailed analysis to show this. For example, although

attempting to prove or disprove statements about continuity is undecidable in general, the

verification condition

tan(x) isContinuousOn (0, π)

is clearly false and can be seen by drawing a graph oftan(x) over the range(0, π).

Our aim is not to provide a fully verified system but a methodology and tools by which

more reliable systems can be constructed. The techniques that we describe in this thesis

may be utilised not just by the CAS designers but also by any developer of computer algebra

routines. They may also be useful in the wider context of software engineering and are

not restricted to the specific programming and specification languages that we have used.

Indeed other programming languages may benefit more from our approach than ours is able

to, while other specification languages may provide better features.

In this thesis we focus on the use of the Larch approach to formal methods [37], and apply

them to theaxi.om CAS [48] and its compiled library language Aldor [83].

CHAPTER 1. INTRODUCTION 3

1.2 Results and achievements

In the main part of this thesis we describe in detail the results of our research but we also

provide a brief summary here. Our work began with a case study into the application

of VDM reification techniques [50] to programs written for computer algebra systems.

The particular study centred around the computation of the strengths of spectral lines of

hydrogen-like atoms. Our aims and objectives were to:

• develop anaxi.om program from a VDM specification

• use reification to select appropriate data-types for representing real numbers

• repeatedly reify the program to obtain more efficient (faster) implementations

• investigate various correctness issues

We were successful in achieving these objectives and describe our methods and results in

more detail in Chapter 3. We also comment on the use of specification matching [85, 88]

as a potentially useful technique for locating functions by their rather than their name.

The core of our research is divided into two parts. The first part is the design of a new

Larch [37] annotation language for Aldor [83] which is described in Chapter 4. Aldor is

a programming language designed for the efficient implementation of computer algebra

algorithms and used in the development ofaxi.om libraries. It was previously known as

AXIOM-XL and A], and we provide a brief introduction to the language in Section 1.3.6

and Appendix A. The second part of our research is the development of lightweight formal

methods and therôleof Larch/Aldor within it: this is described in Chapter 5.

The syntax of the new annotation language, Larch/Aldor, is based on that of existing Larch

annotation languages with new ideas for the annotation of any program statement instead

of just functions and procedures. In addition a store model for Aldor was written in an

algebraic specification language following work of Chalin on LCL [12].

Two case studies were made to examine the effectiveness of our lightweight verification

techniques and to identify issues which affect their use. Although most of the verification

conditions generated during these studies were relatively simple, it became apparent that

the analysis of polymorphic functions may generate verification conditions that can only

be investigated properly when the value of all type parameters are known. We are unsure

of the best way to deal with this problem but an approach of keeping “unresolved” verifi-

CHAPTER 1. INTRODUCTION 4

cation conditions around until the values of unknown types have been identified seems to

be feasible. Thus we have the concept of “pending” verification conditions.

On the practical side, we have implemented a simple global data-flow analyser for Aldor

programs and a verification condition generator for Larch/Aldor programs. Both tools are

written in Aldor and consist of 3600 and 8500 lines of code respectively. Without access to

the source of the Aldor compiler (kindly provided by NAG Ltd) it would have been almost

impossible to have written the verification condition generator in the time available.

The data-flow analyser uses a three-valued logic to represent whether program variables

have, have not or might have, been defined/declared/used. This analysis provides the user

with more information than the current version of the Aldor compiler and may be useful

for detecting a certain class of subtle programming mistakes. The implementation is naı̈ve

since it does not make use of standard techniques such as representing programs as graphs

and recording the states of variables with bit vectors. Instead programs are analysed from

recursively building a hash table of information about each identifier in a given scope level.

It is well known that global program analysis such as this is inefficient!

However, the knowledge gained from the implementation of the data-flow analyser was

an important step towards the design of the prototype lightweight verification condition

generator described in Chapter 5. Before we were able to create this tool we needed to

make a few modifications to the Aldor compiler so that the syntax analyser could recognise

Larch/Aldor annotations. It was also necessary to extend the compiler so that it could gen-

erate a textual representation of an Aldor program such that every symbol was attributed

with its type and any Larch/Aldor annotations. The benefit of obtaining a textual repre-

sentation of annotated programs was that the verification condition generator did not have

to perform any syntax or type checking of Aldor programs—this is very important when

dealing with a language with a type-system as powerful as that of Aldor.

Our verification condition generator is novel because it uses forward analysis of programs

rather than the more common backwards analysis. Although the verification conditions

generated by this approach may become large, they do contain as much information as

possible about the program being analysed from its source and annotations. Verification

conditions are stored internally using conjunctive normal form so that they can be pre-

sented to the user as a set of small logical expressions (which are easier to manipulate than

a single large term). The current implementation uses the object language of the Larch

CHAPTER 1. INTRODUCTION 5

Prover [37] to communicate verification conditions to the user, and makes use of com-

ments to allow verification conditions to be associated with a specific line of source code.

The modular design of the tool means that the object languages of other theorem provers

could be supported relatively easily.

During this project we have learnt that reification can not only be used to help developers

to construct implementations from abstract specifications but, in the context of a computer

algebra system such asaxi.om, may also be used to develop more efficient solutions. We

have also learnt that a lightweight verification condition generator is not unduly difficult

to implement—the hardest part was the pre-processing phase that removed the time de-

pendence from the annotations of user programs. Writing down a formal model of the

Larch/Aldor store was also non-trivial and writing specifications for frequently used Aldor

data-types can be time consuming. However, we believe that lightweight verification con-

dition generation has a lot to offer the user—it enables them to concentrate on the formal

development of parts of the project which are likely to benefit the most. Coupled with the

specialist knowledge of the user, our techniques may help them to discover errors in pro-

grams without resorting to a completely formal development in which the validity of every

verification condition is checked.

Related to our work is that of Kelsey [52] who has modeled theaxi.om category hierarchy

of mathematical structures and a number of interestingaxi.om functors using LSL, the

algebraic specification language of Larch [37]. These specifications can be used to provide

the background theory for Larch/Aldor programs by defining the semantics of operations

and data-types which are available to the Aldor programmer. In addition, the LSL theories

can be used with proof attempts of any lightweight verification conditions generated by our

tools. Specification libraries of this kind are essential if our techniques are to be applied to

CAS such asaxi.om.

1.3 Context of this research

Our research focuses on the use of formal methods (in particular specifications) to increase

the reliability of computer algebra systems and thus increase the confidence of their users

that the answers they receive are the “correct” ones. In this thesis we concentrate on the

use of the Larch approach to formal specification and software development and apply it

CHAPTER 1. INTRODUCTION 6

to Aldor, the library programming language for theaxi.om computer algebra system. The

result of this is the Larch/Aldor BISL which is described in more detail in Chapter 4 and a

prototype verification condition generator (see Chapter 5).

The diagram below illustrates the development process for programs constructed using

our approach. First abstract specifications are written to provide the background theory

for the problem being tackled and may be investigated using appropriate tools such as a

theorem prover. Next the program source code is written and annotated using interface

specifications to link the abstract specifications to the chosen implementation. Finally a

verification condition generator may be used to help detect mistakes in the implementation.

In Section 1.3.1 we provide a brief introduction to program specification and Larch. Then

in Section 1.3.4 we introduce computer algebra systems (CAS) in general andaxi.om in

particular. Finally in Section 1.3.6 we talk about the Aldor programming language—a

more detailed description of which can be found in Appendix A.

1.3.1 Program specification

It is generally accepted that specifications are a “good thing”: without a specification of

the problem it may not be obvious what is to be solved and in which direction one ought to

proceed. Indeed, how can one decide whether a problem has been solved correctly if one

CHAPTER 1. INTRODUCTION 7

does not have a specification of what it is that we are trying to achieve or how the resulting

system is to expected to behave.

Specifications may be written in a variety of languages ranging informal descriptions in

plain English, through to mathematical notations such as VDM [50] or Z [72]. Each lan-

guage has its benefits and drawbacks. For example, prose is useful for conveying a mean-

ing to a wide range of readers who wish to know the overall picture but it is often likely

to omit significant pieces of information, be too imprecise or contain contradictions: see,

for example, the problems with the definition of the Algol programming language identi-

fied by Knuth [55]. At the other end of the spectrum, formal specification languages are

designed to be precise and amenable to mathematical analysis: this allows specifications to

be checked for omissions and inconsistencies but may mean that the casual reader is unable

to understand their meaning.

1.3.2 Using specifications

Once a specification has been written it can be used to guide an implementation. To achieve

the transition from specification to program code various techniques have been utilised to

ensure that the implementation is correct. Early techniques were based around the work

of Floyd [28] and Hoare [42] where a program is decomposed into a set of mathematical

formalæ called verification conditions using axioms and rules of inference. If all the ver-

ification conditions can be proved to be true then the implementation is considered to be

correct. However, in an international survey of industrial applications of formal methods

made by the US Department of Commerce [16] points out that “complex language features

result in complex proof rules” and that “proof rules are exceedingly difficult to get right”.

Applying the Floyd-Hoare technique in its entirety to small programs is not easy and we

argue that it is not suitable for large programs. Indeed once a mistake is discovered in

the implementation it may be too late to remove it with ease. One example of a system

for the development and verification of programs using a variant of Floyd-Hoare Logic is

the Gypsy Verification Environment [16, pages 88–89]. Amongst other things this system

includes a tool for the generation of verification conditions from programs written using the

Gypsy specification and programming languages. A mechanical proof-checker can be used

to help with proof attempts. The philosophy of the Gypsy approach is that the development

of the program, its specification and correctness proofs ought to be performed together as

CHAPTER 1. INTRODUCTION 8

an iterative process. This is contrasted with the approach of specifying, implementing and

then verifying the result.

More recently attention has been directed to proving properties of specifications to de-

termine whether or not they address important aspects of the problem domain. Once the

specification is deemed to be ready an automatic translation into an implementation is made

such that the resulting program is guaranteed to satisfy the specification. RAISE [16, pages

101–102] is one system that uses this approach—specifications may be transformed in var-

ious ways such as changing types and removing under-specification. Each transformation

may generate intermediate proof obligations that must be discharged and in this respect it

is similar to the VDM reification methodology used in Chapter 3. The main differences

are that RAISE provides tools for automatically generating these proof obligations and has

tools which partially mechanise the generation of C or Ada programs from specifications.

Other systems such as the COQ theorem prover [3] allow programs to be generated auto-

matically from proofs. This follows from the “proofs-as-programs” equivalence available

to users of constructive logics. However, these systems may place excessive demands on

the developer, especially for large systems, and the resulting programs may not be very

efficient. They do not address the issue of legacy code either.

Finally there is the lightweight approach described in this thesis. We take a more prag-

matic approach whereby the developer is encouraged to write good specifications and per-

haps prove properties about them. The reification approach of Chapter 3 may be used to

assist the translation of specifications into source code or perhaps other techniques may

be applicable instead. Annotations in the source code permit tools to generate verification

conditions which help to ensure that library functions are used in the correct manner. If a

top-down development process is adopted then lower-level functions can be defined with

an annotation describing their intended behaviour but no implementation. The verification

conditions can be used to investigate properties of the annotated program and changes to

the specification of the behaviour of the low-level building blocks may be altered before

they are actually implemented. Such techniques allow mistakes to be detected as early as

possible and thus reduce the cost of fixing them.

The lightweight approach can also be used with legacy code by following the techniques

described by Evans in [25]. The existing code can be annotated with specifications of its

perceived behaviour and then verification conditions generated from them can be used to

investigate whether the annotations are detailed enough or whether they contain incon-

CHAPTER 1. INTRODUCTION 9

sistencies. This process can be repeated until a significant part of the program has been

annotated and its behaviour understood to a sufficient degree.

1.3.3 Larch

One particular issue which relates to formal specification languages and their use with

programming languages is that of generality. That is, does the specification language allow

programs in a wide variety of programming languages to be described or is it specific to just

a few? This is important because a wide-spectrum specification language such as Z [72]

can be used to model important properties of the problem but the resulting specifications

may be too abstract. This may mean that it is difficult to produce an implementation and

check that it satisfies the specification. In contrast to this, a specification language that is

strongly tied to a particular programming language may not provide enough abstraction

and therefore the benefits of formal specification may be lost.

The Larch approach [37], primarily developed by John Guttaget al. at MIT, tackles this

problem by adopting a two-tiered system. The first tier is represented by a programming-

language independent algebraic specification language called the Larch Shared Language

(LSL) while the second tier consists of a family of Behavioural Interface Specification

Languages (BISLs), each tailored to a particular programming language.

LSL—The Larch Shared Language

LSL specifications are intended to provide the background theory for the problem domain

and the semantics for symbols and types which appear in BISL specifications. A tool is

available to perform syntax and type checking of LSL specifications and to convert them

into the object language of the Larch Prover (LP), a proof assistant for first order logic.

Although LP has been used to investigate and prove theorems in a variety of problem

domains such as the verification of the correctness of a digital circuit [15], reasoning about

algebraic theories [64] and verification of provably correct compilers [76], it is often used

to check that LSL specifications have the properties that their creator expects them to.

LSL specifications are composed from traits which are divided into several sections. In the

diagram below we give an example of a trait for the natural numbers: in theintroduces

CHAPTER 1. INTRODUCTION 10

Natural: trait

introduces

0, 1 : → N

succ : N → N

__ + __ : N, N → N

asserts

N generated by 0, succ

∀ n, m:N

¬(succ(n) = 0);

1 == succ(0);

0 + n == n;

n + 0 == n;

n + succ(m) == succ(n + m);

implies ∀ n:N

n + 1 = succ(n);

section of this trait new symbols 0, 1, the successor functionsucc and binary addition+

are introduced with their signatures. The symbolN appearing in the signatures represents

an LSL sort (a type) and is used here to represent the naturals. Theasserts section

asserts various properties—thegenerated by line states that all values of the sortN

can be constructed using applications of0 andsucc ; it also allows proof-by-induction

overN. The remainder of theasserts section defines a set of axioms designed to capture

the properties of the natural numbers. The finalimplies section allows the specifier to

define other properties which follow from the axioms in theasserts section. These can

be regarded as lemmas and must be proved before they can be used in other traits.

Other features of LSL include the ability to parameterise traits by symbol and sort names,

include or assume properties from other traits, define equality over sort values and to in-

dicate whether a predicate has been completely specified. The latter property is necessary

because LSL symbols may be under-specified, either by accident or deliberately to specify

partial functions such as division.

BISLs—Behaviour Interface Specification Languages

Larch BISLs are a family of annotation languages, each tailored to a particular program-

ming language and are based around the concept of pre- and post-conditions. User pro-

grams are annotated in the appropriate BISL and are able to make use of operators defined

CHAPTER 1. INTRODUCTION 11

in LSL theories. BISL specifications are primarily concerned with implementation details

such as side-conditions on functions, memory allocation and pointer dereferencing. In the

ideal world users would annotate their programs at the same time (or just before) they con-

struct the implementations, just as one ought to do with comments. However, this may not

always be possible, especially when working with legacy code.

At the time of writing there are about 11 different Larch BISLS for languages ranging from

CLU [84] and Modula-3 [51] to C [37] and C++ [59]. Each has been designed to investigate

particular aspects of imperative programming such as inheritance and concurrency as well

as different development methodologies such as specification browsing [14] and interactive

program verification [35]. The syntax and use of BISL specifications is essentially the same

for all languages—functions and procedures may be annotated with statements defining

their pre- and post-conditions as well as indicating any client-visible objects whichmight

be modified when the function is executed. A review of different Larch BISLs is given in

Chapter 4.

1.3.4 Computer algebra systems

Computer algebra systems are environments for symbolic calculation which have been de-

signed to help humans to solve various kinds of algebraic problems symbolically. They

allow users to manipulate of expressions involving symbols which might, at some point,

be assigned concrete numeric values. General purpose computer algebra systems such as

Maple [13], axi.om [48] and Mathematica [86] also provide facilities for graphical dis-

play of curves and surfaces, and most may be extended via a system-specific programming

language. There are also more specialised tools such as GAP [31] for computational dis-

crete mathematics and libraries such asaxi.om/PoSSo for high-performance polynomial

system solving. These systems are used by many different communities of users including

school and university teachers, engineers, and researchers in both science and mathemat-

ics. Aerospatiale, for example, used a Maple-based system for motion planning in satellite

control [73] while Brown [9] usedaxi.om for elaborate computations in group theory. The

specialised systems in particular are extremely powerful: the PoSSo library has been used

to compute a single Gröbner basis which occupies more than 5Gb when compressed, while

GAP is often used to compute with groups of permutations on millions of points.

A classification and review of computer algebra systems can be found in [81] while [10] is

CHAPTER 1. INTRODUCTION 12

a survey of applications for computer algebra by the same authors.

1.3.5 axi.om

axi.om [48] is a general purpose, strongly-typed computer algebra system which began life

at IBM in the mid-70s as a system called Scratchpad and is now maintained by NAG in

Oxford, England. The versions used during this research are 2.0 and 2.1. The system can

be used interactively via a textual interface and graphical results may be displayed in a

separate window. All values entered by the user and returned byaxi.om have a unique type

and thus enables users to quickly spot mistakes resulting from unclear or incorrect input.

In addition the type checker can prevent operations being applied to inappropriate values.

For example, when2*x**3 - 4*x + 1 is typed intoaxi.om it will display the result

2x3−4x+1 and indicate that its type isPolynomial Integer . If the user really wanted

a polynomial with floating-point coefficients then they can retype the expression and insist

that the result has typePolynomial Float . Functions and types are first class values

and may be used just like any other value provided that type-correctness restrictions are

satisfied. Programs may be written in the interpretedaxi.om interactive language or in

Aldor, a compiled extension language (see Section 1.3.6).

The most notable feature ofaxi.om is the two-level object model ofcategoriesanddomains.

Categories are conceptually equivalent to the mathematical or logical notion of a category

and are used to specify information about domains. A category declares the names and

types of values (usually functions) that a domain will provide to the user. They are closely

related to Haskell type classes [44] and may be parameterised by arbitrary values; they can

be joined to form new categories and can inherit from one or more other categories. The

intended meaning of a category is defined by its name, by the symbols it declares and by

documentation comments in the source code. For example, the intended meaning of the

SemiGroup category is apparent from its name. From its documentation we find that it

is “the class of all multiplicative semigroups i.e. a set with an associative operation∗” .

Definitions in a category may be conditional on the properties of any parameters; default

values may also be provided. It is interesting to note that Java [27] has a similar concept

known as aninterface . However, Java interfaces cannot be parameterised by values,

nor can methods be defined conditionally. Like Java, categories with no body can represent

typed attributes for domains.

CHAPTER 1. INTRODUCTION 13

A domain is a type which defines zero or more exported (publicly accessible) symbols.

These symbols correspond to constant values and are usually functions although they do

not have to be. A domain is an instance of a single category and may be parameterised by

arbitrary values; domain exports may be conditional if the category being satisfied requires

this. Thus domains are similar to Haskellinstances and Java or C++ (concrete) classes.

If a domain defines a representation then we call it anabstract data typeotherwise it is

called apackage. Domains may be tested to discover which categories they belong to

and this is often used when defining conditional exports. For example, domains which

define an ordering on their elements may claim to belong to the categoryOrder ; domains

representing collections of values of typeT may test ifT belongs toOrder and provide a

sorting operation if it does.

It is important to note thataxi.om cannot prove, for example, that a domain which claims

to belong to theSemiGroup category really is the same as a mathematical semi-group.

However, if the implementers ofaxi.om domains ensure that such correspondences are

retained, then the strong type system will ensure that the user does not attempt to perform

inappropriate operations. For example, thePolynomial(R) domain constructor requires

that its argumentR belongs to the categoryRing andaxi.om will allow the construction

of Polynomial(Integer) since Integer satisfiesRing , but it will disallow the

construction ofPolynomial(Boolean) sinceBoolean does not.

The reader is referred to Davenport [18, 19] for an excellent description of Scratchpad and

the construction of abstract algebra in such a system; by the same author [17] describes

axi.om as it is now.

1.3.6 Aldor

Aldor [83] was designed to be an extension language foraxi.om in which computer algebra

routines could be naturally and efficiently implemented. It is a type-complete, strongly-

typed, imperative programming language that has a two-level object model just like that

of axi.om. Types and functions are first class entities allowing them to be constructed and

manipulated just like any other values; dependent types can be used in certain contexts such

as function definitions to provide parametric polymorphism. For example, the function to

sum a list of elements might be declared to be of type(R:Ring, l:List R) -> R .

The first argumentR is a type which satisfies the categoryRing and so there must be an

CHAPTER 1. INTRODUCTION 14

addition operator+ of type (R, R) -> R and a zero element0 of typeR. The type of

the second argument and the type of the return value of this function both depend on the

value of the first argumentR; static type checking ensures that this function can only be

applied if the first argument is a type satisfyingRing .

A novel feature of Aldor arepost facto extensionswhich allow the meaning of existing

types to be extended. This mechanism is used by existing Aldor libraries to create do-

mains in several stages starting with basic implementations which are later extended with

more operations to increase their functionality. Other features include automatic garbage

collection, generic iterators and interoperability with languages such as C, C++, Fortran

and LISP. It is possible for example, for an Aldor function which invokes a C function to

be passed as an argument to a Fortran procedure. This interoperability enables Aldor pro-

grams to be written that use existing libraries such as the NAG Fortran library or the C++

PoSSo library, and for programs written in these languages to utilise Aldor libraries.

An example of a simple Aldor category to model sets might be written:

define SetCategory(T:BasicType): Category == with
{

-- We inherit the operations of finite linear aggregates
FiniteLinearAggregate(T);

-- Declarations: % is the domain which implements us
member? : (T, %) -> Boolean;
subset? : (%, %) -> Boolean;
union : (%, %) -> %;

-- Exports such as intersection() omitted for brevity
}

Using this category we can provide an implementation for the domain of sets:

Set(T:BasicType): SetCategory(T) == add
{

Rep == HashTable(HashKey, T); -- Internal representation
import from Rep; -- Make the hash table operations visible

member?(t:T, S:%): Boolean ==
{

-- Search the internal rep using the key hash(t)
(found, value) := search(rep(S), hash(t), t);
found;

}

-- Other exports omitted for brevity
}

CHAPTER 1. INTRODUCTION 15

A more detailed introduction to Aldor can be found in Appendix A, but Watt [83] is the

definitive guide to the language. A strongly-typed embeddable computer algebra library

called
∑it has been implemented in Aldor and is described in [7]; a library called

∏it is

currently being designed to allow parallel programs to be written in Aldor [63] where the

underlying architecture is abstracted away using categories. Poll and Thompson [71] have

produced a formal description of the Aldor type system.

1.4 Related work

1.4.1 Program specification and program checking

As mentioned in Section 1.3.3 there are a number of different Larch BISLs in existence,

each designed to allow the specification different aspects of computing to be investigated.

For example, Larch/SmallTalk [14] has been used to examine specification browsing while

Larch/C++ [59] concentrates on the issues of inheritance of code and inheritance of spec-

ifications. However, many of the Larch BISLs do not have any program analysis tools

associated with them—they are primarily used as a means to support clear and concise

documentation. The exceptions are Larch/Ada [35] and Larch/C [24]. Larch/Ada uses a

syntax-directed editor called Penelope [35] for the interactive development and verification

of Larch/Ada programs (see Section 4.1.1). Larch/C has a static checker called LcLint [24]

which can check for violations of themodifies clause but does not attempt use the an-

notations to produce VCs (see Section 4.1.1). Speckle [82] is also of particular interest

(see Section 4.1.1). It is a compiler which was designed to investigate how specifications

could make programs run faster. Speckle accepts CLU programs containing different im-

plementations of procedures which are annotated with Larch-style interface specifications

and constructs a logical model of the program using control-flow graphs.

Moving away from the Larch world, the Extended Static Checking (ESC) system [22] was

developed at DEC SRC to provide automatic machine checking of Modula-3 programs and

the techniques developed for this project are now being applied to Java. ESC is designed to

detect violations of array bounds andNIL pointer dereferencing as well as deadlocks and

race conditions in concurrent programs through the use of simple yet powerful annotations.

A special purpose theorem prover has been developed specifically for use with ESC to

CHAPTER 1. INTRODUCTION 16

enable the tool to run quickly and with as little user interaction as possible.

ProofPower is a commercial tool developed by the High Assurance Team (HAT) at ICL [53]

based on the HOL [34] theorem prover and the Z [72] notation for a subset of Ada. Func-

tional requirements of programs are often presented to the HAT as documents containing Z

specifications. These can be checked and further developed through the use of ProofPower.

Programs can then be prototyped in Compliance Notation using Knuth’s “Web” system

for literate programming, and refined into Ada programs. Verification conditions from the

Compliance Notation are generated as Z specifications using an appropriate tool and can

be discharged via formal or informal arguments as required (e.g.with ProofPower).

Eiffel [65] is a programming language in which specifications containing pre- and post-

conditions are an integral part of the language syntax as are loop invariants and measures.

The compiler is able to convert the annotations into runtime checks and the programmer

can produce their own exception handlers to deal with situations where the specifications

are not satisfied. The Eiffel compiler does not perform any theorem proving and it is up to

the programmer to ensure that their implementations satisfy their specifications. However,

the ability to detect when assertions are violated at runtime via exceptions is better than the

facilities provided by many other programming languages.

Extended ML [75] is another programming language which incorporates specifications in

its syntax and semantics. Users can write algebraic specifications describing the properties

of functions and use stepwise refinement (c.f. reification [50]) to obtain suitable implemen-

tations. Advantages of this are that the implementer must repeatedly justify their choices of

data-type and algorithm which can produce better solution. Unfortunately this means that

everything has to be proved formally at each stage. It is interesting to note that while EML

annotations are similar to LSL, the former is able to define the behaviour of EML functions

directly whereas Larch BISL annotations define the semantics of function using LSL.

1.4.2 Computer algebra and formal methods

Although we have identified two main ways in which formal methods can be used to im-

prove the reliability of computer algebra systems there has also been some work investi-

gating how computer algebra systems can be used to help with theorem proving. Three

main techniques have been investigated: the development of CAS inside a theorem prover

CHAPTER 1. INTRODUCTION 17

(TP), the extension of an existing CAS with TP support and the cooperation of existing

TP and CAS. The first technique was adopted by de Bruijn [20] with the development of

AUTOMATH for analysis; more recent work includes the development of constructive re-

als in LEGO by Jones [49] and CAS algorithms in NuPrl by Jackson [46]. The second

technique has not been explored so well although the work of Clarkeet al [5] with Math-

ematica [86] and reasoning about power series is impressive. Finally CAS may be used

as oracles for TP with varying degrees of trust. Examples include using Maple [13] as an

oracle to HOL [34] for the reals [40], and the Isabelle/Maple interface [43]. Adams [1]

uses PVS [68] to construct and query a table of symbolic definite integrals enabling them

to obtain correct answers where existing CAS do not.

1.5 Thesis structure

This thesis is divided into a further five chapters. In Chapter 2 we motivate our work by

describing various problems which affect large software systems. We look at ways in which

different types of errors can be prevented from appearing in programs in the first place as

well as ways to identify other types of errors which may be present in an implementation.

Chapter 3 is a case study that investigates the use of VDM reification techniques [50] to

assist in the construction programs to solve computer algebra problems. Reification is used

not only to select appropriate data-types to represent polynomials and the real numbers,

but also to deliver successively more efficient (faster) implementations. In the light of

our experience from this case study we comment on the use of specification matching as

proposed by Wing [85] and Zaremski [88].

The next two chapters discuss the core of our work. Chapter 4 describes the design of the

Larch/Aldor annotation language beginning with with a survey of existing Larch languages

and discuss the issues involved in the design of a new Larch language. Then we present

the syntax of Larch/Aldor followed by a model of its store based on the work of Chalin

with Larch/C [12]. In Chapter 5 we detail our lightweight approach to program verifica-

tion, discuss how lightweight verification conditions generated by this process can be used.

We discuss the design issues for tool support and then describe the prototype lightweight

verification condition generator that we have implemented. We review the lessons that we

have learned from the implementation and suggest how it could be developed further.

CHAPTER 1. INTRODUCTION 18

Finally in Chapter 6 we investigate the uses of Larch/Aldor and lightweight program ver-

ification through two case studies. The first case study follows the development of an an-

notated Larch/Aldor function implementing the quicksort algorithm from algebraic spec-

ifications of sorting linear containers such as lists. Verification conditions are generated

from the implementation and each is examined in turn. The second case study begins

with an existing Aldor library function for converting textual representations of numbers

into values belonging to a particular type such as the integers. The program is annotated

with Larch/Aldor specifications and the resulting verification conditions generated from

it are investigated. We find that even simple verifications generated from both programs

may defeat attempts to mechanically discharge them without guidance. We also discover

that verification conditions generated from polymorphic functions present extra difficulties

since their proof attempts may need to be postponed until the value of all type parameters

are known.

Chapter 2

Motivation

In this chapter we motivate our work: the design of a Larch BISL [37] for Aldor [83] and

to construct program analysis tools such as lightweight verification condition (VC) gener-

ators. We begin in Section 2.1 by outlining various problems which afflict large software

systems and comment on domain-specific problems for CAS such asaxi.om [48]. Then in

Sections 2.2 and 2.3 we consider ways in which programming language-specific problems

can be addressed. Finally in Section 2.4 we link together the ideas discussed in this chapter

and show how they relate to the rest of this thesis.

2.1 Problems with large software systems

The issues of creating, maintaining and extending large software systems are an important

aspect of software maintenance and development in industry [8]. They include

• legacy systems—programs which may have been written many years ago and whose

documentation, source code and perhaps even the original hardware platform may no

longer be available. This obviously creates difficulties for maintainers.

• libraries—a large computer system will undoubtably have a significant number of

subroutines which may, or may not, be documented. Indeed the names of procedures

that are used may not convey any meaning to the reader without documentation.

19

CHAPTER 2. MOTIVATION 20

• modularity—modular programming such as the object-oriented approach to software

development has significant benefits which can help to isolate mistakes and reduce

the possible number of changes that are required to fix them. If a programming

language does not provide support for this then it is up to the programmers to enforce

it as part of their work practices; this may not be sufficient in practice.

• communication—large software systems usually require more than one person to

work on them. It is likely that a team of people will design the product, another team

will implement a solution and yet another team will test it to check that it is viable.

The members of each team evolve with time and individuals may not see the system

from inception to deployment and so good communication of information between

individuals (e.g.through documentation) is essential. After deployment other people

may be involved with its maintenance and they need good communication with the

designers and implementers (again probably through documentation).

Since CAS are often large systems which provide a wide range of functions it is inevitable

that they will suffer from the same kind of problems as those mentioned above. For exam-

ple, theaxi.om [48] CAS which is still being developed and maintained at the time of writ-

ing, can trace its origins traced back to the mid 1970’s when it was known as Scratchpad.

axi.om has a large library of computer algebra functions and data types which introduces

problems for both the user and the maintainer. Both parties need to be aware of the existing

resources that are available to them in the library before developing new ones. However,

locating functions of interest can be difficult since their names may not familiar or obvious

to everyone. For example, in Chapter 3 we would like to useaxi.om to evaluate the integral∫ ∞
0

rne−αrdr

The obvious choice of function to achieve this might appear to beintegrate but in

fact one needs to uselaplace instead. To help resolve this kind of problem Wing [85]

proposes using interface specifications and theorem proving to identify functions according

to their behaviour rather than just their name.

It is also important that users and maintainers are aware of the semantics and potential side-

effects of functions that they use—in this thesis we argue that in the context of computer

algebra systems with libraries containing a large number of functions that are firmly based

in mathematics and algebra, it is more likely that errors will occur through misuse of these

CHAPTER 2. MOTIVATION 21

functions rather than in their implementation. We believe that interface specifications can

be used to alleviate this problem by enabling the designer and implemented to clearly define

the meaning of individual functions, to state explicitly the conditions under which they may

be used, and to highlight any side-effects that they might produce.

Many CAS also provide an object language and developers using them will probably en-

counter other standard problems such as failure to initialise variables or invoking functions

with invalid arguments. In the sections that follow we look at various ways in which these

problems may be tackled, both through prevention and detection. There are, of course other

problems which are specific to CAS such as the issue of what kind of transformations can

be applied to expressions typed-in by the user (normalisation) and the distinction between

symbols which are place-holders for future values and symbols which represent indeter-

minates. These are areas in which CAS are prone to producing erroneous or unexpected

results but ones which we are not concerned with here. That is not to say that the techniques

described in this thesis could not be applied to these problems. For example, the simplifi-

cation of expressions can be regarded as the application of a transformation function, the

behaviour of which ought to be amenable to specification.

2.2 Error prevention

In this section we look at the prevention of errors in relation to programming languages

in general. First in Section 2.2.1 we consider how the design of a language can affect

the quantity and type of mistakes that can be introduced into its programs. Then in Sec-

tions 2.2.2–2.2.5 we investigate how software engineering practices can be used to try and

prevent errors from appearing in implementations from the outset. We believe that the first

defence against mistakes and flaws in programs is to use appropriate software engineering

techniques to prevent errors from appearing in the first place. There are various ways of

achieving this but in these sections we just consider four that rely on program specification.

2.2.1 Error prevention by language design

One of the best places for reducing the number of bugs in computer programs lies in the

design of the programming language itself. A language designer must perform a delicate

CHAPTER 2. MOTIVATION 22

balancing act between providing a complex language with a large degree of functionality

and one which is simple to understand but which might lack features that programmers

want. However, careful choice of syntax and semantics of the language can prevent certain

types of errors occurring, make them harder to create and/or make them easier to detect.

For example, in S-algol [66] all variables must be initialised to a legal value when they are

declared. While this does not prevent the programmer from using a poor initial value it does

encourage them to think carefully about it. Later in Section 2.3.3 we see that the powerful

type systems and two-level object model ofaxi.om and Aldor allow the programmer to

concentrate more on the design and structure of an implementation. This may also reduce

the amount of time that needs to be devoted to low-level “hacking” and data-mangling

compared to a language such as C or C++ and we argue that the resulting software will be

more robust and reliable.

Ghezzi and Jazayeri [32] highlight several properties of programming languages which we

have summarised below. These properties ought not only to be considered during the design

of a language but also during the selection of a language for a particular implementation.

In large projects an inappropriate choice could be expensive.

Writeable

The language ought to be easy to express algorithms in so that the programmer can con-

centrate on problem solving rather than the implementation. Assembly languages are often

cited as being non-writeable since the programmer often has to pay particular attention to

register allocation at the expense of overall task being tackled.

Readable

Programs ought to be easy to read and comprehend, both in terms of syntax and semantics.

This allows the programmer to detect errors in the code as easily as possible and means

that the maintainer has an easier task once the product is finished.

CHAPTER 2. MOTIVATION 23

Factoring

If a specific fact is dealt with in a single place in the program then any changes which

need to be made to it are highly localised and hopefully well understood. The alternative is

that the fact needs to be changed in many different parts of the program which admits the

possibility that some parts are missed or some changes are different to others. Most modern

languages support this concept through the use of procedures and named constants; some

languages also support this by providing abstract data-types.

Abstraction

Data abstraction means that the client of a module or data-type only needs to be aware of

its interface, not the internal implementation or representation. This separation of concerns

allows the creator to change the module provided that the behaviour and interface remain

constant. Since the client can rely on this fact, their task is made simpler by the abstraction

and should not have to alter their code to take account of any changes. Control abstractions

are similar in concept—they provide a way for the programmer to describe the order in

which a collection of statements are executed. They alleviate the problem of determining

execution paths through the analysis of jump or branch instructions that plague assembly

languages and early versions of Fortran.

Exceptions

Catering for unexpected and undesirable events at the point where they occur is complex

and generally produces unreadable and error-prone programs. Furthermore, some events

may be so unexpected that the programmer fails to catch them! Exception handling facili-

ties are designed to separate the task of dealing with errors from the main problem solving

which often leads to clearer and simpler programs. However, recovering after exceptions

may be non-trivial due to the distance between the code that raised the exception and the

code which deals with it.

CHAPTER 2. MOTIVATION 24

Optimisable

If the programming language is easily optimisable by the compiler or translator then the

programmer will not have to spent too much effort in this area. The result should be that

programs are easier to read and will contain fewer mistakes since hand-optimisation gen-

erally makes programs more opaque and error-prone. A classic example of this is the

practice of Fortran programmers tweaking the assembly code produced by early compilers

to achieve suitable optimisations!

Other properties

Other language design issues for reducing the number of possible errors in programs in-

clude the provision of type information (see Section 2.3.3), redundant keywords to im-

prove syntax checking (see Section 2.3.2) and variable declaration (see Section 2.3.4). One

important decision which will not be considered further is the choice between different

programming methodologies such as imperativeversusfunctionaletc.

2.2.2 Program specification

As we described in the introduction, specifications are widely recognised as a valuable part

of the software engineering process. They are essential for defining the problem that needs

to be solved, for providing guidance about the possible ways to proceed and for being a

reference against which the behaviour of the solutions may be judged.

There are numerous specification languages available to designers and developers, each

with their strengths and weaknesses. Informal prose may help to communicate information

to readers with a wide range of technical and non-technical backgrounds but they are li-

able to contain imprecision, omissions and contradictions. Formal specification languages

based on mathematical or logical notations such as VDM [50] or Z [72] are designed to

be amenable to rigorous mathematical analysis but require a certain level of expertise on

the part of the reader. Omissions and inconsistencies within specifications written using a

formal language may be obvious to the reader or they may become apparent when expected

properties of the specification cannot be derived or proved.

CHAPTER 2. MOTIVATION 25

As we mentioned in Section 1.3.3, the Larch [37] methodology of formal specification

upon which our work is based uses a two tiered approach. Abstract specifications are writ-

ten in the algebraic specification language LSL and procedural interface specifications are

written in the BISL tailored to the target programming language. The emphasis is on using

algebraic specifications to describe the abstractions that the solution to a problem ought to

have independently of any implementation. Procedural interface specifications define the

interfaces of program components using the abstractions provided by LSL specifications.

Other methodologies may have different aims and intended uses but most, if not all, can be

used to help reduce the chance of mistakes and errors appearing in programs. By clearly

and/or unambiguously defining the problem and/or properties of its solution, possible flaws

in the design may be detected early on before an implementation is produced (by which

time it may be very expensive to rectify). The implementation itself can be constructed

bearing in mind the abstractions and properties defined by the specification and hopefully

the finished product can be checked that to see if it satisfies them.

2.2.3 Reification

Reification [50] is the process of repeatedly applying transformations to a abstract spec-

ification to obtain a new specification. The usual objective is to transform an abstract

specification of a problem into a concrete specification which closely resembles a program

that could be executed and is related to the programming technique of stepwise refinement.

Each transformation must be justified: aretrievefunction must be defined that will reverse

the transformation and thus show that no information has been lost. This technique allows

abstract specifications which were constructed during the design stage to play a directrôle

in implementation process. If each reification step can be justified and the concrete spec-

ification that is finally produced is close enough to a program in the target programming

language then one can argue that there are many fewer opportunities for bugs to creep in.

However, the strength of this argument relies on the validity of each transformation.

In Chapter 3 we investigate the use of reification as applied to a quantum mechanics prob-

lem which is to be implemented in the object language of a computer algebra system. We

show how the abstract VDM specification of the problem was obtained from a mathemati-

cal description and show that it can be implemented almost directly inaxi.om. We proceed

to show that reification can be used to obtain more efficient implementations.

CHAPTER 2. MOTIVATION 26

Outside of the VDM world, reification is central to the Extended ML [75] programming

language which was mentioned in Section 1.4.1. Algebraic specifications are an integral

part of the language and stepwise reification is used to transform them into suitable imple-

mentations. This is made easier by the fact that EML is a functional programming language

but users are still required to formally prove each transformation.

2.2.4 Program derivation and synthesis

In the previous section we pointed out that the reliability of the program that is generated

by reification depends on the reliability of the transformation steps and their justification.

Since the source of the unreliability is likely to be the human who is conducting the reifi-

cation process it would seem sensible to make use of a machine where it is possible.

Program synthesis is a method for creating programs from proofs in a constructive logic

that the specification of the program is satisfied for all inputs and outputs. The construction

that is generated as an integral part of the proof is extracted and expressed as an executable

program. This technique benefits considerably from automated theorem proving systems

and has related applications in program transformation. For example, in [41] Heskethet al

show how tail-recursive programs can be automatically synthesised from a specification.

However, we are uncertain whether the efficiency of the generated code would allow this

technique to scale up to large programs.

2.2.5 Cleanroom

The Cleanroom approach [21] to software development is also worthy of note. The moti-

vation is based on the clean rooms used by silicon chip manufacturers where the cost of

removing defects from chips is much more expensive than preventing them occurring in

the first place. The Cleanroom methodology endeavours to ensure that the programs sub-

mitted for testing are free from errors, thereby allowing the testing to certify the reliability

of a component rather than locating mistakes in it. Some of the benefits are likely to arise

from careful management of developers, strict adherence to the development methodology

and the continual review of components of the system to determine their correctness and

quality. However, reification is utilised to obtain implementations from specifications.

CHAPTER 2. MOTIVATION 27

2.3 Error detection

It is not always possible to construct programs which can be shown to satisfy their speci-

fication and which are guaranteed to be free from errors. Thus we need techniques to help

the developer detect as many problems as quickly and easily as possible. In the sections

that follow we look at a number of different techniques and comment on their suitability.

2.3.1 Runtime assertions

The simplest technique for detecting mistakes in programs is probably the use of runtime

assertions. This is generally achieved by using a function that takes a boolean argument

and aborts the program if the argument is false. Languages such as C provide this function

as part of the standard library while in others, such as Eiffel [65], it is part of the language.

If such a function is not available it is often trivial to implement.

Statements of the formassert(predicate) are inserted at various points in the pro-

gram which is then tested appropriately. If the program terminates due to a failed assertion

one can only assume that there is a mistake in the program or that the assertion was incor-

rect. The drawback is that we cannot easily tell where the error occurred in the program

unless the assertions are very simple or the assertion checker explains the failure—an as-

sertion that consists of many conjoined predicates will be of little help unless the user can

identify which predicates are false. The assertions may need to provide adequate coverage

of the area in which the bug arose to enable the source of the problem to be precisely lo-

cated. Even if the program runs without any assertions failing it does not necessarily mean

that there are no mistakes in the program.

The approach adopted by the Eiffel language is to consider violations of the pre-conditions

as an error that may be caught by the exception handling system. This means that the

programmer has some control over how invocations of a routine in invalid states may be

dealt with and leads to more robust software.

It is important to note that there are limitations to the expressiveness of an assertion lan-

guage. For example, while many procedural interface specifications (see Section 2.3.6)

can be translated into runtime checks, those involving quantifiers are likely to present sig-

nificant problems. It is fair to say that most runtime systems do not have the theorem

CHAPTER 2. MOTIVATION 28

proving support to check quantified statements and the enumeration of all possible states

(c.f. model checking) may be infeasible. However, the APP tool for C programs [74] shows

how effective assertions can be when combined with procedural interface specifications.

2.3.2 Syntax checking

At the heart of all compilers is a syntax checker [2] which is used to ensure that the source

code being translated conforms to the rules defining what it is to be a legal program in

the input language. This kind of analysis is often the easiest to make, particularly if the

grammar of the language is unambiguous and has been created with a compiler in mind.

The types of programming error that can be detected with this technique are those involving

typing mistakes such as extraneous or missing characters, mis-spelt keywords and unbal-

anced parentheses. However, the design of the programming language can help the syntax

checker perform better analysis by increasing the context sensitivity of the language. One

way of achieving this is to include redundant keywords. For example, in many languages

the expression used in anif test must be followed by thethen keyword. The latter adds

nothing to the language, except perhaps to make it more readable, but it may help to iden-

tify errors such as malformed expressions which are detected whenthen appears to be used

in the wrong place. Without this the checker may not be able to distinguish theif test from

the if body and generate confusing error messages.

2.3.3 Type checking

Although untyped languages can provide a large amount of flexibility they also give the

programmer a greater opportunity to make mistakes through incorrect typing. Typed lan-

guages allow the programmer to provide more information about the (intended) meaning of

identifiers and values. Not only can this information be used to help a human reader it can

be utilised by the compiler to perform extra checks on programs and might even be used

to improve performance. For example, if a function was written under the assumption that

one of its arguments would always be a positive integer, then in an untyped language the

programmer must remember to check that this restriction is satisfied. In a typed language

it ought to be possible to define a new type that represents positive integers and annotate

CHAPTER 2. MOTIVATION 29

the function parameters with this type. A type checker is used to decide whether or not this

function is being invoked with values of the correct type and inform the programmer if this

is not the case.

Unfortunately explicitly annotating every symbol with a type is both tedious and likely to

make the program much harder to read. As a result, compilers for strongly-typed languages

often include a type-inference engine as part of the type checker. The type-inferrer uses any

information that can be found in the program to try to deduce the types of all identifiers.

If it is able to find a unique type for each symbol then the program is considered to be

type-correct and the types that were inferred are used as if the user had supplied them

explicitly. If the type-inference engine is unable to find any suitable type or finds more

than one possible type for a given symbol then an error message is displayed. Such error

messages either indicate a mistake in the program or that the programmer needs to supply

extra type information to resolve ambiguities.

Ideally a type checker ought to be able to reject all programs which are not type correct

but this may result in some programs being rejected when they are in fact correct. For

example, the following Aldor program could be regarded as being statically type-correct

since theelsebranch can never be executed. However, it will not compile since the Aldor

compiler assumes that it is possible for either of the branches to be executed.

local var:Integer;

if (true) then
var := 42;

else
var := "Hi there!";

Both axi.om and Aldor have a rich and powerful type system that is based on a two-level

object model of categories and domains. Categories are similar to Haskell [44] type classes

and can be regarded as interfaces to domains; domains may represent abstract data-types or

collections of functions and data. Categories and domains may be parameterised by arbi-

trary values, usually types or functions, which increases the expressiveness of the language.

For example, it is possible to define a domainMatrix which is parameterised by the type

of its elementsR, whereR satisfies the category ofRing . Informally, this means that the

compiler will only allow matrices over a ring to be constructed which eliminates the chance

that an invalid kind of matrix will be used (assuming that a domain which satisfiesRing

CHAPTER 2. MOTIVATION 30

actually corresponds to the mathematical notion of a ring). It also means that the imple-

mentation ofMatrix(R) knows what operations the domainR provides and can rely on

their properties. For example, the addition operator+ can be assumed to be commutative

even though the compiler cannot verify this.

Another interesting feature of the Aldor type system is the provision of dependent types.

This facility can be used to provide parametric polymorphism [11] and to allow values to

be returned along with a type context. Below is an example of dependent types:

reduce(T:Type, l:List(T), op: (T, T) -> T, start:T): T ==
{

-- Reduce the list ‘l’ using the operation ‘op’. The
-- starting value of the reduction is ‘start’. Eg:
-- listSum := reduce(Integer, aList, +, 0);
local result:T := start;

for x in l repeat
result := op(result, x);

result;
}

Here the types of the second, third and fourth arguments ofreduce as well as the return

value, all depend on the value of the first argument. Mutually dependent types are permitted

although there are other limitations that are not found in functional programming languages

with dependent types. These mainly arise because the compiler does not evaluate type

expressions at compile time and thus the type represented by the integer5 is considered

to be different from the type represented by the integer expression2 + 3. Thompson and

Poll [70] have proposed to rectify this problem by extending the Aldor type system so that

types may be evaluated at compile time.

2.3.4 Data and control-flow analysis

Certain classes of programming mistakes such as data and control-flow anomalies can be

detected with static program analysis. Both types of analysis divide the program into sec-

tions calledbasic blocks[2]. These are linear sequences of statements with no jumps or

branches in them. We consider functions that can never terminate and statements that can

never be executed as control-flow anomalies. Data-flow anomalies include:

CHAPTER 2. MOTIVATION 31

• use of variables before they have been assigned well-defined values. For example,

the failure to initialise anInteger variable in Aldor or a pointer in C may produce

undesirable runtime behaviour.

• variables that are declared but not used. This may indicate that other variables have

been used incorrectly in their place.

• consecutive assignments to a variable without any intervening reads. This may be

because statements between the assignments have been omitted or that one or more

of the assignments is to the wrong variable.

Static program analysis may be performed locally or globally and each has its benefits

and drawbacks. Global program analysis may provide a complete picture of the entire

program but it can easily become computationally expensive and may be infeasible for

large programs. On the other hand, local program analysis examines a few basic blocks

at a time and provides a conservative estimate of the global view. Although it may miss

anomalies that are detectable by global analysis, its complexity is related to the number of

basic blocks examined at each step rather than the size of the whole program. Thus local

program analysis is usually adopted and applied to each function or procedure in turn.

One of the first tools to detect data-flow anomalies was DAVE [29] which was designed

to analyse Fortran programs using in-built rules. Cesar [67] also worked on Fortran pro-

grams and using sequencing constraints based on regular expressions written in Cecil [67]

to perform inter-procedural analysis. Since Cecil is independent of any particular program-

ming language, Cesar can be extended to analyse programs written in other languages such

as C and Ada [67]. The UNIXlint utility [79] for C performs stricter type-checking

than the early C compilers did and more recent versions also look for common data-flow

anomalies such as use-before-definition errors, dead code and failure to use return values

from functions. Widespread use of C and the benefits of static checking has encouraged the

developers of modern C and C++ compilers undertake this kind of analysis automatically.

Another tool based onlint is LcLint [25]. This also works on C programs but com-

bines Larch/C interface specifications (see Section 4.1.1) with its own special annotation

language to enable it to perform a wider range of checks than standardlint . Many of

the checks are based around detecting memory management and pointer errors: the bane

of many C programmers. Users may decide to follow an abstract data-type style of pro-

gramming (abstract data-types themselves are not available in C) and use LcLint to check

CHAPTER 2. MOTIVATION 32

for any violations of information hiding or naming conventions that have been adopted for

this approach. Other checks include detecting code whose behaviour depends on the order

of evaluation, code which might exceed the limits of compilers on some systems as well as

checks on macros.

The Aspect [45] data-flow analysis tool can be used to detect missing dependencies be-

tween “aspects” of abstract objects. As an example, consider a procedure which searches a

non-empty unsorted list of integersL for the smallest elementn. Clearly all the elements

of L must be examined, so one could specify that the value ofn in the post-state of the

procedure depends on the value ofL in the pre-state. As with run-time assertions, the de-

pendency checking performed by Aspect is only able to highlight dependencies which are

missing from the code and is unable to pinpoint where the programmer ought to look for

the mistake. However, Aspect was designed for detecting bugs in languages such as CLU

where the design of the language has made many of thelint -style checks redundant and

thus the detection of more subtle programming mistakes is more beneficial.

2.3.5 Symbolic execution

Instead of executing a program on concrete test data, symbolic data can be used to represent

different classes of inputs that a program can accept. These input classes could be derived

from control-flow analysis: for example, only those inputs which affect the flow-of-control

of the program need to be considered.

Given a program and some symbolic input data, an “execution tree” can be constructed

which represents all the paths which might be followed during execution. This tree can be

used in several ways:

• it might be examined to generate concrete test data

• assertions about the output can be checked against various possible execution routes.

• user-supplied assertions and the structure and content of the tree could be used to

generate verification conditions (see Section 2.3.7).

One problem faced by symbolic execution is the production of infinitely deep trees which

arise from the analysis of conditional statements. In the case of the EFFIGY system [54] for

PL/I, user-interaction is used to guide the traversal of the tree with support for backtracking;

CHAPTER 2. MOTIVATION 33

when used for automatic test-case generation the user must impose a limit on the depth

of the search. An alternative method might require the formalisation of induction over

symbolic execution trees to permit “execution” over infinitely deep branches.

2.3.6 Procedural interface checks

A well-known specification technique that can be applied to procedural languages is based

around the definition of pre- and post-conditions for functions and abstract data-type meth-

ods. Two such systems are Larch [37] and VDM-SL [50]. However, there do not appear

to be many tools in existence which are able to make full use of the interface specifications

when checking the source code. For example, the LcLint tool [25] is able to use Larch/C

interface specifications to improve the types of static data-flow analysis that it can perform.

However, it only uses the information relating to the modification of client visible state

and, at the time of writing, does not make any use of the pre- and post-conditions. In-

scape [69] is another system for performing procedural interface checks; it uses conditions

and obligations between caller and callee to highlight mistakes in user programs. A review

of different Larch interface specification languages can be found in Chapter 4.

We believe that the information provided by interface specifications can be used not only

as clear and concise documentation, but also as a way of generating verification conditions

to help detect programming mistakes. If the implementation of a library procedureX
has been shown, or is assumed, to satisfy its interface specification, then it is relatively

straightforward to generate verification conditions for each application ofX to show that

the pre-condition is satisfied. The information provided by the post-condition can be used

to extend a database of knowledge of the program state afterX has finished executing. This

technique is discussed in more detail in Chapter 5.

2.3.7 Verification condition generation

To verify the correctness of a program, we require a set of criteria against which the pro-

gram can be judged. The criteria need to be expressed in a specification language that has a

well defined semantics and which is amenable to formal manipulation and proofs. In addi-

tion, a formal semantics of the programming language, or a useful subset of it, is required

CHAPTER 2. MOTIVATION 34

so that programs can be reduced to purely logical or mathematical expressions. A popular

approach is to decompose the program into loop-free segments and to attach assertions to

each based on the global correctness assertion [30, 33, 42]. Using the formal semantics of

the programming language the assertions are pushed back through each section of the pro-

gram until a statement that the post-conditions are logical implications of the pre-conditions

is obtained (the verification condition). This process is repeated for each loop-free section

that corresponds to a possible execution path. An alternative method is to start from the

pre-condition and push it through the section to obtain the strongest post-condition. This

method suffers from the problem that the VC may contain information relating to tempo-

rary calculations that is actually irrelevant to the correctness of the program. Hence the

post-condition may be much larger and more complex than is necessary [62].

The addition of loops and procedures complicate the process of VC generation since many

imperative languages do not have well defined semantics of loops. Not only that but proce-

dures may perform operations which affect the global program state: so-called side-effects.

However, given sufficient care, loops may be investigated using induction techniques with

the addition of a termination requirement. If the program is modular then procedures can be

regarded as verified sub-programs—if the pre-condition for the invocation of the procedure

holds then we can assume that the execution terminates in a state where the post-condition

is true. The procedures themselves can be verified separately if necessary.

In Chapter 5 we introduce these techniques of program verification and describe our light-

weight approach. Given that automatic program verification is generally undecidable [30]

we believe that, at least in the context of systems involving large amounts of mathematical

knowledge such as CAS, it is helpful to have a tool that can generate verification conditions

and leave the user to decide what to do with them. In Chapter 5 we suggest that some

verification conditions which would present significant difficulties to automatic theorem

provers might be easily discharged using expert knowledge of the user. At other times, such

as in non-critical situations, the user may decide to ignore some or all of the verification

conditions depending on how difficult or important the proofs are. Others may simply be

noted for future reference or used to place additional restrictions on the use of the program

so that the verification conditions can be trivially discharged.

Two examples of verification condition generators with quite different philosophies are

Penelope [35] for Ada and the Extended Static Checking System or ESC [22] for Modula-

3. Penelope is an interactive syntax-directed editor for programs written using a subset of

CHAPTER 2. MOTIVATION 35

Ada that has a formal semantics. It can automatically generate verification conditions from

user-supplied assertions and Larch/Ada [35] specifications, and then attempt to discharge

them. The user is able to provide simplifying lemmas and rewrite rules to assist the proof

attempt, they can modify the program (which may change the set of verification conditions),

or they can simply note them for future reference. Penelope can be used for full program

verification but relies heavily on user interaction.

In contrast to this ESC is completely automatic and is based on the view that program

checking must be fast enough that the programmers are not discouraged from using it, and

it must be automatic just like type checking so as not to be tedious. To achieve these aims

ESC is intended to be used for limited program verification with goals of detecting simple

programming errors such as dereferencing of NIL pointers or the detection of certain types

of race conditions and deadlock in concurrent programs. The user annotates their program

with specifications which are transformed into verification conditions. These are passed to

the SIMPLIFY [22], an automatic theorem prover specifically designed for use with ESC.

If a proof attempt fails, an example contradiction to the verification condition is presented

to the user. Since some valid formulae may be unprovable in this system an heuristic limit

to the search depth is used to ensure termination.

2.4 Relation to Aldor and this thesis

In Section 2.1 we highlighted various problems that can affect large software systems such

as theaxi.om CAS [48]. Central to each of the issues was documentation or the lack of

it and that is a part of what this thesis is about. We are proposing to apply the Larch ap-

proach of two-tiered formal specification to Aldor [83] andaxi.om—in the first instance

Larch/Aldor BISL specifications can be used to allow designers and developers to write

clear, concise and (hopefully) unambiguous documentation which will serve as a strong

basis for communication. In Section 2.2.3 we introduced the technique of reification and

this is covered in more detail in Chapter 3. With reification, specifications can be succes-

sively refined to obtain concrete implementations and may also be used for optimisation.

Finally in Sections 2.3.6 and 2.3.7 we looked at how interface specifications can be used by

static program analysers to investigate whether or not a program fragment is being used in

the correct context. In Chapter 5 we will look at various techniques for program verification

and describe our ideas for lightweight verification condition generation using Larch/Aldor

CHAPTER 2. MOTIVATION 36

interface specifications.

As we mentioned in Section 1.3.6, Aldor is a strongly-typed imperative programming lan-

guage that was designed to enable computer algebra routines to be implemented in a natural

and efficient way. It is possible to provide extensions toaxi.om which are implemented in

Aldor and since this language can offer benefits to other developers we feel that it is is bet-

ter to concentrate on Aldor rather than the object language ofaxi.om. Recent developments

with the Maple CAS also hint that Aldor may be used more widely than just in theaxi.om

community and thus we believe that the potential benefits of Larch/Aldor are bigger than

those of Larch/axi.om.

Chapter 3

Reification for computer algebra

systems—a case study

In this chapter we investigate how the VDM reification [50] techniques can be applied

to programs written for computer algebra systems. In particular we use reification as a

way of obtaining more efficient (faster) implementations of anaxi.om program designed

to compute relative atomic oscillator strengths of hydrogen-like atoms. We also use it to

help select a pragmatic representation of the real numbers suitable for this case study, and

to investigate the use of interface specifications and verification techniques for program

development. Limitations of computer algebra systems are also touched upon.

Reification is the process by which one specification is transformed into another with the

provision of a justification for the transformation. Usually one starts with an abstract spec-

ification of a problem which is transformed into a specification that is closer to the chosen

implementation language. This process is repeated as many times as necessary. Reifica-

tion can be split into two separate processes—data reification and operation decomposition.

Data reification is used to transform abstract data types in the specification into concrete

data types that are closer to those of the target programming language. Operation decom-

position is used to develop implementations from abstract operators which appear in the

specification. The requirement of justifications for these transformations gives the user in-

creased confidence in the reliability of the results. In addition the process of making these

justifications forces the developer to think very carefully about the choices that are made at

each stage. We believe that this helps to improve the quality of the implementation.

37

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 38

The task of computing hydrogenic oscillator strengths is an interesting one. Given the fa-

cilities of computer algebra systems such asaxi.om it is actually possible to implement

abstract specifications of the problem directly. This allows us to measure quantatively the

effect of transforming one specification into another. In this case study we concentrate on

the use of data reification to provide a suitable implementation of the real numbers and

other concrete types required for the computation. The choice of a data type to represent

the real numbers required us to circumvent the type system ofaxi.om to a certain degree. To

regain the safety lost by this approach we rely on interface specifications and the reification

arguments justifying the choice. Operation decomposition is used to obtain implemen-

tations that are more efficient than their predecessors,i.e. they are able to compute the

solution to the problem in less time.

We begin in Section 3.1 by describing the real-world quantum mechanics problem that

we are tackling and provide the equations needed to solve it. Then in Section 3.2 we

give VDM specifications and use data and operator reification to obtain an implementation

closely related to the abstract specifications. After investigating whether the implementa-

tion satisfies its specification we repeat the reification process to obtain successively more

efficient implementations. During these stages we ask whether the implementations sat-

isfy their specifications, and whether or not they satisfy the previous implementation; an

alternative reification path is also described in Section 3.4. We find that most of the work

for operator reification actually takes place before the VDM specifications are written. In

Section 3.1.2 we make use of standard algebraic manipulations to simplify the expressions

which we wish to compute with: in the context of this case study these transformations rep-

resent operator decompositions and we (implicitly) appeal to undergraduate mathematics

for their justification. Thus the approach to this problem, which might be adopted by any

physicist, can naturally be thought of as reification.

Finally in Section 3.5 we discuss the issues raised. These include the implementation

of real numbers in computer algebra systems such asaxi.om and definite integration: how

well do computer algebra systems cope with this task and how reliable are their results? We

consider the uses of formal methods and briefly touch on the subject of method selection

by way of specification matching.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 39

3.1 Hydrogenic oscillator strengths

In this section we describe the mathematics behind the atomic oscillator problem in prepa-

ration for the various implementations. The aim is to constructaxi.om programs that can

compute the weighted mean strength of transitions in hydrogen atoms from one atomic

level to another. These programs are the result of reifying Equation 3.14 which defines this

quantity. The reification process is described in Section 3.1.2 and generates three equations

representing different formalisations of the problem:

rab =
∫ ∞

0
Rnblb(r) r Rnala(r) r

2 dr

rab =
∫ ∞

0
Qnblb(r)Qnala(r) e

−
(
na+nb
nanb

)
r
r3 dr

rab =
β∑
i=0

ci i!

α(i+1)

These equations form the basis of the VDM specifications described in subsequent sections,

and we appeal to standard techniques of algebraic manipulation for the justification of the

reification from one to the other. Although this section necessarily contains some quantum

mechanics, readers with a basic knowledge of integration ought to be able to follow the

reasoning even if they do not understand the meaning of the equations. A more thorough

description of the problem and the mathematics behind it can be found in texts such as [6].

3.1.1 Weighted mean line strength

The aim of this study is to compute the weighted mean line strengths of transitions from

one atomic levelna to anothernb for hydrogen atoms. It can be easily generalised to

other hydrogen-like atoms by introducing their atomic massZ (for hydrogenZ = 1).

Each atomic leveln is subdivided into a number of different states of equal energy where

each state is identified by spin and magnetic quantum numbersl andm respectively. The

quantum numbersn, l andm all satisfy

n ∈ {1, 2, 3, . . . ,∞} (3.1)

l ∈ {0, 1, . . . , n− 1} (3.2)

m ∈ {−l,−l + 1, . . . , 0, . . . , l − 1, l} (3.3)

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 40

The number of states sharing the same energy is called the degeneracy. We define the

degeneracy of states that share the same values ofn andl asgnl and the total degeneracy of

atomic leveln asgn. It follows that

gnl = 2l + 1 (3.4)

gn =
n−1∑
l=0

gnl = 2n2 (3.5)

From quantum mechanics it is known that the weighted mean line strength can be described

by the equation

fnanb =
1

gna

∑
la

∑
lb

(
2lmaxδlalbEab

3

)
|rab|2 (3.6)

whereEab is the energy difference between statesa = (na, la,ma) andb = (nb, lb,mb):

Eab = Ea − Eb =
1

n2
a

− 1

n2
b

(3.7)

The termslmax andδlalb represent selection rules which arise because transitions from one

arbitrary state to another may be forbidden by quantum mechanics. The rules for the most

common type of transition (electric dipole) require that∆l = ±1 and either∆m = 0 or

∆m = ±1 where∆l = la − lb and∆m = ma −mb.

lmax = max (la, lb) (3.8)

δlalb =

 1 if |la − lb| = 1

0 otherwise
(3.9)

The remaining term in Equation 3.6 israb which represents the radial component of an

equation not described here (the dipole transition matrix). We note in passing that the dipole

transition matrix is defined using spherical polar coordinates and the angular components

give rise to the selection rules described above. It can be shown that

rab =
∫ ∞

0
Rnblb(r) r Rnala(r) r

2 dr (3.10)

where

Rnl(r) = Nnle
− ρ

2ρlL2l+1
n+l (ρ) (3.11)

Nnl =

√√√√(ρ
r

)3
[

(n− l − 1)!

2n (n+ l)!3

]
(3.12)

and whereρ = 2r
n

. The associated Laguerre polynomial,Lqp, is defined by:

Lqp(x) = (−1)q
p−q∑
s=0

(−1)s (p!)2

s! (q + s)! (p− q − s)!
xs (3.13)

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 41

3.1.2 Solving the integral

Equation 3.6 can be rewritten using equations from the previous section to give

fnanb =

(
n2
b − n2

a

3n2
bn

4
a

)
na−1∑
la=0

nb−1∑
lb=0

δlalb lmax r
2
ab (3.14)

This is clearly easy to evaluate for given values ofna andnb once the value ofrab is known.

However, Equation 3.10 which definesrab cannot be implemented very easily in many

programming languages since generally they do not have the libraries that are essential for

representing polynomials and do not provide the necessary integration facilities.

In this section we will transform Equation 3.10 to obtain an equation forrab that can be

easily implemented in programming languages such as C or Fortran (Equation 3.21). In

doing so we will also obtain other intermediate equations forrab which can be evaluated

by axi.om with varying degrees of speed. Using the substitution

Rnl(r) = Qnl(r) e
−(rn) (3.15)

with Equations 3.11 and 3.12 we can rewrite Equation 3.10 as

rab =
∫ ∞

0
Qnblb(r)Qnala(r) e

−
(
na+nb
nanb

)
r
r3 dr (3.16)

This equation can be solved byaxi.om and will be used in Section 3.3 as the basis of the

first reified specification. We note that this is a Laplace transform of the product of the

polynomialsQnala,Qnblb andr3 and, after using a little algebra (operation decomposition),

we find that

Qnl(r) = rl
(

2

n

)(2l+3
2)

√√√√(n− l − 1)!

2n (n+ l)!3
L2l+1
n+l

(
2r

n

)
(3.17)

Now we have an equation forrab consisting of the monomialr3, an exponential of the form

e−αr and the product of two polynomials inr where the coefficients of the polynomials are

in terms ofn andl only. SinceQnl(r) is a polynomial with a finite number of terms (see

Equations 3.13 and 3.17),QaQb r
3 can be expressed as

QaQb r
3 = c0 + c1r

1 + c2r
2 + · · ·+ cnr

n (3.18)

wheren = (na + nb)− (la + lb) + 1 and whereQa is a shorthand forQnala(r). This means

that Equation 3.16 can be written as a sum of integrals:

rab =
[∫ ∞

0
c0 e

−αrdr +
∫ ∞

0
c1r e

−αrdr + · · ·+
∫ ∞

0
cnr

n e−αrdr
]

(3.19)

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 42

Now since ∫ ∞
0

rne−αrdr =
n!

α(n+1)
(3.20)

we can rewrite Equation 3.19 to give

rab =
β∑
i=0

ci i!

α(i+1)
(3.21)

whereci is the coefficient ofri of the polynomialQaQb r
3 and where

α =
na + nb
na nb

(3.22)

β = (na + nb)− (la + lb) + 1 (3.23)

This equation is used in Section 3.3.3 as the basis of the most concrete specification. After

a little inspection one can see that it would be easy to write a program in a language such

as C or Fortran that can evaluate Equation 3.14 using Equation 3.21.

3.1.3 Symbolic mathematics using a computer algebra system

In the previous sections we have applied the techniques of algebraic manipulation to trans-

form Equation 3.10 into Equation 3.21 and, as we shall see later on in this chapter,axi.om

is able to evaluate the latter much more quickly than the former. In addition the latter equa-

tion can easily be implemented in a programming language such as C or Fortran whereas

the former presents significant problems.

The reader may be wondering why we have not discussed the use of a computer algebra

system to assist with the algebraic manipulations of Section 3.1.2, particularly since this

field is often regarded as theforte of such systems. Unfortunately the reason is that com-

puter algebra systems may be unable to perform the symbolic mathematics that we need

and this is illustrated with an example from this case study.

Equation 3.16 may seem daunting at first so it is natural to undertake further investigations

of it using a computer algebra system. However, the presence of the seemingly innocuous

parametersna andnb may place the equation beyond the scope of the chosen system. The

result is that the computer algebra system may simply refuse to evaluate the expression or

it may attempt to do so but return an invalid or untrustworthy result.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 43

For example, if we askaxi.om to evaluate
∫∞

0 xn exp (−αx)dx it returns the result “failed”

which indicates that it was unable to answer our request—the equation is beyond the scope

of the integrate function. If specific values forn andα are provided then a result can

be obtained. Requesting the indefinite integral for a specificn (and arbitraryα) does return

a suitable answer but this is of no help with the definite integral shown. Similarly Maple V

is unable to provide a solution to the equation, even when assumptions are placed on the

types of the symbolsn andα. However, Mathematica 2.0 succeeds returning the answer

Γ (n+ 1)

αn+1
(3.24)

which, although it is correct, leaves us wondering what assumptions were made on the type

of n andα for this result to be reached. In principle these symbols could represent values

from a variety of types which would render the equation meaningless. Perhaps recognising

that the equation represents a Laplace transform may help?

L{f (x)} =
∫ ∞

0
f(x) exp (−sx)dx

Unfortunately this is still out-with the scope ofaxi.om unless we provide specific values for

n. Maple V performs better returning the same result as Mathematica did without needing

any assumptions onn.

Thus at one extremeaxi.om will not provide a solution to the integral as it stands, presum-

ably because it does not have any information about the type of the parametersn andα.

At the other extreme Mathematica 2.0 returns the correct solution but this is tempered by

the fact that it has made unspecified assumptions about the parameters; Maple V is only

able to produce a solution to the problem when specifically asked to compute the Laplace

transform. As we expect, computer algebra systems are not omnipotent and while they

may give correct answers to the majority of questions put to them we must be wary. When

using them we must be careful to note any assumptions that they make and to check their

results whenever possible. There will be times, as shown here, when our chosen system

cannot give us the answer to a particular problem and we will need to look to another

source—either a different system or a suitable reference text—for the further assistance.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 44

3.1.4 Summary

In the previous two sections we obtained an expression for the weighted mean line strength

of electric dipole transitions between atomic levelsna andnb (Equation 3.14). We have

solved the radial integral forrab and in doing so we obtained three different expressions for

it (Equations 3.10, 3.16 and 3.21). This process represents the majority of the work of op-

eration decomposition described in more details in the following sections. These equations

form the basis of the specification of the problem; Equation 3.10 represents the abstract

specification which has been successively refined or reified to obtain a more concrete spec-

ification in the form of Equation 3.21. Although the abstract specification of Equation 3.10

cannot be easily implemented in a programming language such C, it could be implemented

in a language such as those used by computer algebra systems. We will utilise this fact in

the next section to provide quantative comparisons of the effect of reification.

We have also noted that while computer algebra systems can be extremely valuable for

solving problems which are beyond the pen-and-paper approach, they are not a panacea

and need to be used with a certain degree of caution. Although we were unable to use

axi.om to help with all the symbolic computation of Sections 3.1.1–3.1.2, we will see that it

is extremely good at computing the results of our equations for specific values of parameters

such asna.

3.2 Implementing the abstract specification

In the previous section we derived an equation for the weighted mean strength of a hydrogen-

like atomic oscillator (Equation 3.14). We applied reification techniques in the form of op-

erator decomposition to obtain three further equations, 3.10, 3.16 and 3.21 which represent

different levels of abstraction. The standard techniques of algebraic manipulation provide

the justification for each reification step and will not be covered here. In this section we

use Equations 3.10 and 3.14 as the abstract specification of our problem, produce VDM in-

terface specifications and then construct an implementation inaxi.om. The functions which

appear in these equations are used as the basis for the functions in our implementation,

naturally modeling the original mathematical specification.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 45

3.2.1 From abstract specification to interface specification

We can write the VDM style specification of anaxi.om function to compute the value of

Equation 3.14 for specific values ofna andnb simply as follows:

fnanb 4
(
n2
b − n2

a

3n2
bn

4
a

)
na−1∑
la=0

nb−1∑
lb=0

δlalb lmax r
2
ab

Fab (na : Z, nb : Z) z : R

pre (na > 0) ∧ (nb > 0)

post z = fnanb

The first line defines an equation which represents the functional specification of the inter-

face and which is used in the post-condition of behavioural interface specification which

follows it. The latter can be considered as a template of the functionFab which is being

implemented. The arguments of the function are given in parenthesis after its name using

the syntax of a general programming language and the types of the VDM-SL specification

language. The symbolz appearing after the parameter list of the function represents the

value returned by the function and allows such a value to be referred to in the behavioural

interface specification. Other specification languages such as the Larch family [37] use a

pre-defined symbol such asresult instead. The only restriction on this function is that the

atomic level numbersna andnb must be positive integers. The definitions ofδlalb andlmax

are trivial (see Section 3.1.1 and Equation 3.9) and need not be specified. The specification

of r2
ab follows from Equation 3.10:

rab 4
∫ ∞

0
Rnala(r)Rnblb(r) r

3 dr

Rab (na : Z, la : Z, nb : Z, lb : Z) z : R

post z = rab

which should be self-explanatory; note that there are no pre-conditions. Likewise

Rnl(r) 4 Nnl

(
2r

n

)l
e−(r/n) L2l+1

n+l

(
2r

n

)

Rnl (n : Z, l : Z) z : R [x]

pre (n 6= 0)

post z = Rnl(r)

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 46

whereR [x] represents the polynomials over the real numbers.

A definition of the associated Laguerre polynomialL2l+1
n+l

(
2r
n

)
can be found in the form of

Equation 3.13 and, since it is provided as anaxi.om library function, there is no need to

specify it here. All that remains is to specify a function to computeNnl

Nnl 4

√√√√(2

n

)3
[

(n− l − 1)!

2n(n+ l)!3

]

Nnl (n : Z, l : Z) z : R

pre (n− l ≥ 1) ∧ (n+ l ≥ 0) ∧ (n 6= 0)

post z = Nnl

The pre-condition forNnl ensures thatNnl is a real-valued function. From the definition

of the possible range of values forn andl in Section 3.1.1 we note that this is valid for all

atomic states(n, l).

3.2.2 Constructing an implementation

With appropriate choice of concrete data types the specifications in the previous section

can be implemented almost directly. The main problem is in choosing a concrete data type

to represent the real numbers and polynomials over the reals. With languages such as C

and Fortran the common choice is the floating-point data type, since these languages do not

offer much else without significant extra work on the part of the implementer. Although

axi.om has support for floating-point calculations to an arbitrary precision we would like

to do better—floating-point numbers are only an approximation to the reals and one would

expect a computer algebra system to provide other options. Such an approximation would

also complicate any reasoning about the implementations since the errors at each stage of

the calculation must be taken into account.

Instead we have chosen to use theExpression(R) domain. This can be used to repre-

sent expressions involving symbolic functions with coefficients taken from a totally ordered

setR. A variety of symbolic functions are available including the trigonometric functions

sin, cos etc.and special functions such as the Euler Gamma function and Bessel functions.

Values of this domain can be manipulated in the same way as values of other domains such

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 47

as polynomials and may be integrated which is important for this case study. The specifi-

cations in the previous section show that all the symbols have integer coefficients. Since

the integers form a totally ordered set the domainExpression(Integer) is an ideal

choice to represent the reals inaxi.om. Although it is unlikely that this type can represent

all real numbers, it can be shown to represent the subset of real numbers used in this case

study (see Equations 3.14 and 3.21).

It is important to note that we cannot simply replace every occurrence of the real numbers

with theaxi.om typeExpression(Integer) when we construct our implementation.

For example, the abstract type ofRnl is a univariate polynomial over the real numbers

and so one might be tempted to use theUnivariatePolynomial(x, R) construc-

tor with Expression(Integer) for R. Unfortunately this is not possible due to the

type constraint on this operator that requiresR to be a ring (Expression(Integer)

is not). However, a univariate polynomial over the reals can be considered as an expres-

sion involving a symbol (usuallyx) raised to integer powers with real coefficients. Careful

examination of the definition ofRnl(r) and its constituent terms shows that it can be repre-

sented usingExpression(Integer) directly.

The choice of types for other identifiers is more straightforward. The pre-condition ofFab

requires that its two parametersna andnb are positive integers; this is captured by the use of

theaxi.om typePositiveInteger (abbreviated asPI). Similarly the second argument

of Rnl corresponds to the quantum numberl which must be a non-negative integer and so

NNI is used. We note in passing that if theaxi.om type system was extended in the way

suggested by Poll [70], it would be possible to use our interface specifications as types.

This would reduce the chance that the functions we have defined could be used with invalid

arguments. For example, the pre-condition of the functionNnl cannot be captured using

the current type system ofaxi.om.

The source code for this implementation can be found in Appendix B.1.

3.2.3 Checking for satisfaction

Does the implementation given in Appendix B.1 satisfy the specifications in the previous

section? Since the specification consists of algebraic formulae and theaxi.om language in

which the program is written is designed to implement such formulae in an intuitive man-

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 48

ner, it is possible to show that the implementation satisfies the specification by inspection

assuming that the semantics ofaxi.om are the same as those in the specification.

All the functions defined in Section 3.2.1 are a direct translation of the specification and

therefore will be considered to satisfy their specifications. The pre-conditions of these

functions are trivially discharged using the pre-condition ofFab and the definition of

fnanb . However, two parts ofFab require closer examination. The first is that we have

expressed the double summation as a nested iteration (a “for ” loop) and the second is

that the Kronecker delta function is implemented using anif-then construct. Both are

common programming techniques but need to be verified before the implementation can

be considered to be correct with respect to its specification.

Proof of summation implementation

We wish to prove that theaxi.om code

r := 0

for i in a..b repeat

r := r + f(i)

is a correct implementation of the formal sum
∑b
i=a f(i) wherea <= b. To do this we

need to establish a loop invariant, that is a predicate that is true after each execution of the

body of the loop and is also true when the loop terminates. This can be derived from the

post-condition of the loop [23], the specification of which is

pre (a ≤ b) ∧ (r = 0)

post r =
∑b
j=a f(j) ∧ (i = b)

inv r =
∑i
j=a f(j) ∧ (a ≤ i ≤ b)

(note that we usej to represent the summation variable in the abstract specification to dis-

tinguish it from the program variablei used for the same purpose in the implementation).

The proof is by induction and the hypothesis to be proved is:

Pk : r =
b∑

j=a

f(j) (3.25)

wherek = b− a.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 49

1. Base step—establishPk for k = 0 i.e. b = a.

From the source code it can be seen that for the LHS of Equation 3.25 we have:

r = 0 + f(a)

and for the RHS of Equation 3.25:

a∑
j=a

f(j) = f(a)

HenceP0 is true.

2. Induction step—assumingPk is true, show thatPk+1 is true. To do this we consider

the case where we have executed the loop body withi = c+ 1 for a ≤ c < b. From

Pk we know thatr =
∑c
j=a f(j) and so the LHS ofPk+1 becomes:

r′ = r + f(c+ 1)

= f(c+ 1) +
c∑

j=a

f(j)

Similarly, the RHS becomes:

c+1∑
j=a

f(j) = f(c+ 1) +
c∑

j=a

f(j)

HencePk+1 is true and by the induction principle,Pk is true for allk. Thus the implemen-

tation of the summation shown is correct (assuming that addition is commutative) and it is

easy to extend the proof to show that the double summation used in the implementation of

fnanb is also correct. The semantics of theaxi.om “ for ” loop ensures termination provided

thatf(j) terminates for allj ∈ {a . . . b}.

Proof of δlalb implementation

We need to show that

if (abs(la - lb) = 1) then

rab := Rab(na,la,nb,lb)

r := r + max(la,lb)*rab**2

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 50

is the same asr := r + δlalb lmax r
2
ab within the double summation of Equation 3.14 where

lmax = max(la, lb). The code fragment above has the effect of addinglmax r
2
ab to r when

|la − lb| = 1 and adding zero at all other times. Thus it defines the functionf(lb) (which

corresponds tof(j) used in the proof of the formal sum implementation above) as follows

f(lb) =

 lmax r
2
ab when|la − lb| = 1

0 otherwise

From Equations 3.9 and 3.14 we obtain exactly the same expression forf(lb) and so the

implementation of the Kronecker delta function as an “if-then ” construct is correct.

3.2.4 Summary

In Section 3.2.1 we translated the two main equations of the problem into VDM func-

tional and behavioural interface specifications. These were naturally broken down using

the functions appearing in these equations. However, before an implementation could be

constructed we needed to apply data reification to select an appropriateaxi.om concrete data

type to represent the real numbers and polynomials over the reals. In Section 3.2.2 we de-

cided that the use of arbitrary precision floating-point numbers was not the best choice and

settled on theaxi.om domainExpression(Integer) . The result is that Equation 3.14

can be solved for particular values ofna andnb with no loss of precision. Only when the

values are displayed as floating-point numbers will any rounding take place. Finally in

Section 3.2.3 we applied simple verification techniques to check that the implementation

was correct with respect to its specification.

3.3 Towards more efficient implementations

In this section the specifications of Section 3.2 are reified to obtain new specifications and

two, hopefully more efficient (faster) implementations. Most of the work of operation

decomposition has already been performed in Section 3.1.2 and Section 3.2.2 has solved

most of the problems of data reification. We find that we cannot provide a justification for

the data reification which produced the implementation based on Equation 3.21 and discuss

the issues involved. In addition we ask whether the new implementations satisfy the first

implementation.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 51

3.3.1 Reification and implementation

Examination of the specifications of Section 3.2 show that there is little that can be done

with fnanb . However, from Section 3.1.2 we can reifyrab from Equation 3.10 to Equa-

tion 3.16 giving a new specification:

rab 4
∫ ∞

0
Qnala(r)Qnblb(r) e

−
(
na+nb
nanb

)
r
r3 dr

Rab (na : Z, la : Z, nb : Z, lb : Z) z : R

pre (na 6= 0) ∧ (nb 6= 0)

post z = rab

Now we only need a specification ofQnl:

Qnl(r) 4 rl
(

2

n

)(2l+3
2)

√√√√(n− l − 1)!

2n(n+ l)!3
L2l+1
n+l

(
2r

n

)

Qnl (n : Z, l : Z) z : R [x]

pre (n 6= 0) ∧ (n+ l ≥ 0) ∧ (n− l ≥ 1)

post z = Qnl(r)

To obtain an implementation we apply the arguments relating to the choice ofExpres-

sion(Integer) as the concrete type forR andR [x] as in Section 3.2.2. The values of

Rab andFab are unchanged and this type is able to represent all values ofQnl.

The source for this implementation can be found in Appendix B.2. Unfortunately we find

that this implementation is slower that the one from Section 3.2.2. This seems to be due to

the way thataxi.om simplifies expressions—the first implementation generates expressions

that theaxi.om integrate function can evaluate more quickly than those generated by

this implementation.

3.3.2 Satisfaction

There are now two parts to the question of satisfaction: firstly does the implementation

satisfy its specification and secondly does this implementation satisfy the implementation

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 52

of Section 3.2.2? The answers to both these questions produces different paths through

the reification diagram of Figure 3.1 in Section 3.1. The proof that this implementation

satisfies its specification is the same as that used for the first implementation: assuming

the semantics ofaxi.om are the same as the mathematics used in the specification all that

is required is a correctness proof of the implementation of the double summation and the

Kronecker Delta function.

The second question is slightly more complicated. Since the two programs will be used

by callingFab with different values ofna andnb, we can see this question is the same as

asking whetherFab’ satisfiesFab (for clarity the functions from the implementation of

this section will be primed to distinguish them from their unprimed counterparts from the

implementation of Section 3.2.2). Since these two functions are identical the satisfaction

question is whetherRab’ satisfiesRab i.e.

Rab’(na, la, nb, lb) ==

integrate(Qnl(na,la) * Qnl(nb,lb) * exp(-alpha*r) * r**3,

r=0..%plusInfinity)

must satisfy

Rab(na, la, nb, lb) ==

integrate(Rnl(na,la) * r**3 * Rnl(nb,lb),

r=0..%plusInfinity)

Both of these functions have been shown to satisfy their specifications and so we can use

these specifications to obtain the verification condition

∫ ∞
0

Rnala(r) r
3Rnblb(r) dr ≡

∫ ∞
0

Qnala(r)Qnblb(r) e
−
(
na+nb
nanb

)
r
r3 dr

which can be proved using the algebra of Section 3.1.2.

3.3.3 Further reification

Following the same pattern as in Sections 3.2.1 and 3.3.1 we reify to obtain a new specifi-

cation using Equations 3.21–3.23:

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 53

rab 4
β∑
i=0

ci i!

αi+1

ci 4 ith coefficient ofQa(r) Qb(r) r
3

α 4 na + nb
nanb

β 4 (na + nb)− (la + lb) + 1

Rab (na : Z, la : Z, nb : Z, lb : Z) z : R

pre (na 6= 0) ∧ (nb 6= 0)

post z = rab

It can be seen from the specification above that an implementation ofrab needs to be able

to extract the coefficients of the polynomialQa(r)Qb(r) r
3 and this places a restriction on

the concrete data-types which can be used. Inaxi.om only the polynomial and series types

provide such an operation and so theExpression(Integer) type cannot be used to

represent the real numbers here. Instead the floating-point type will be used.

Since floating-point numbers are an approximation to the real numbers, any implementa-

tion that uses them will not satisfy either its specification, or the implementation of Sec-

tion 3.3.1. However, since the results can be computed to an arbitrary precision at the

expense of increased computation time, the lack of satisfaction is not too significant for

this final implementation. It also gives us an opportunity to see if there is a noticeable

difference in the results of the different implementations. For simplicity the concrete data-

typeUnivariatePolynomial(r,Float) was chosen to representR [x]. The code

for this implementation can be found in Appendix B.3.

3.3.4 More satisfaction

Using the methods described in Section 3.2.3 we find that this implementation does not

satisfy its specification. This is because floating-point type only approximates the real

numbers albeit to an arbitrary precision in systems such asaxi.om. Instead we may wish

to weaken the satisfaction requirement and ask whether this implementation satisfies the

implementation of Section 3.3.1 to within an acceptable degree of numerical error in the

results. While this is almost certainly possible it is likely to be unpleasant and will not be

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 54

discussed here. Leaving aside the issues of approximating the real numbers with floats, if

we wish to show that this implementation satisfies the previous one we need to consider

the verification condition that the integral

∫ ∞
0

Qnala(r)Qnblb(r) e
−
(
na+nb
nanb

)
r
r3 dr

can be implemented as a summation. This requires the use of the identity from Section 3.1.2∫ ∞
0

cix
ne−αxdx =

ci n!

α(n+1)

The proof that this can be implemented using a “for ” loop is similar to the proof in Sec-

tion 3.2.3 and need not be shown here.

3.3.5 Summary

In Section 3.3.1 we reified the specifications of Section 3.2 to obtain a more efficient im-

plementation. Unfortunately the new implementation generated different (but algebraically

equivalent) expressions than the first and was actually slower than it. In Section 3.3.3 the

reification process was repeated and a third implementation was obtained. This was found

to be significantly faster than the previous implementations and could easily be translated

into “traditional” programming languages such as Fortran or C. However, we note that the

latter implementation does not satisfy its specification since it uses theaxi.om floating-point

data type which only approximate the real numbers. We pointed out that the satisfaction

argument could be weakened to permit the use of this type provided that we allow a certain

degree of numerical error in the results. Ignoring this aspect of data reification we pointed

out that the implementation still satisfies the operation decomposition requirements.

3.4 An alternative direction

In Section 3.1.2 we stated that the integral forrab could be represented as the Laplace trans-

form of the polynomialQa(r)Qb(r) r
3. Sinceaxi.om provides a function for computing

Laplace transforms we are able to embark upon a different reification path to that taken in

the previous sections. In this section we reify Equations 3.10 and 3.11 to obtain two more

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 55

implementations. We do not, however, make any attempt to show that they satisfy their

specifications or other implementations since the arguments are the same as those used in

the previous sections. We begin by discussing issues of specification matching—following

from our experience with this particular case study, such techniques could have enabled us

to choose the Laplace transform path much earlier in our development.

3.4.1 Specification matching

When we first started this case study we were not aware of what a Laplace transform was,

nor did we have any reason to expect that it would enable us to produce more efficient

implementations than those created from the reification path of Sections 3.2 and 3.3. We

only stumbled across this technique while browsing theaxi.om libraries looking for alter-

native integration routines after the case study had been completed. If the specification

matching techniques of Wing [85] and Zaremski [88] been available to us then we may

have discovered it sooner.

Specification matching is a way to compare two software components using their specifi-

cations. This enables functions or other software components to be identified and located

using their behaviour rather than keywords in their names. For it to be successful one must

be able to obtain both exact and inexact (orrelaxed) matches under the control of the user.

In the context of this case study we would have found it extremely valuable to have been

given the option of searching for a function whose post-condition was that it returned the

value of ∫ ∞
0

f(x) exp (−sx)dx

for some functionf(x). Of course writing down a specification of such a function may not

be easy, especially when attempting to capture notions such as “f is a function ofx”.

3.4.2 Reification again

In this section we reify Equations 3.11 and 3.10, and Equation 3.16 to obtain two new spec-

ifications and implementations. Operation decomposition is simple algebraic manipulation

and is similar to that used in Section 3.1.2. Likewise the data reification arguments are the

same as those of Section 3.2 and so we do not provide any satisfaction proofs—they are

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 56

essentially the same as those given already.

The Laplace transform of a functionf (which satisfies various conditions defined in stan-

dard texts such as [87, page 257]) with respect tox may be written

L{f(x)} =
∫ ∞

0
f(x) e−sx dx (3.26)

wheres is referred to as the transform variable. From Equation 3.11 it is clear that Equa-

tion 3.10 can be expressed in this form. Thus the specification ofrab in Section 3.2 can

reified to give

rab 4 L
{
Tnala(r) r

3 Tnblb(r)
}

s 4 na + nb
na nb

Rab (na : Z, la : Z, nb : Z, lb : Z) z : R

pre (na 6= 0) ∧ (nb 6= 0)

post z = rab

whereRnl = exp (−r/n)Tnl and wheres is the transform variable. The specification of

Tnl is

Tnl(r) 4 Nnl

(
2r

n

)l
L2l+1
n+l

(
2r

n

)

Tnl (n : Z, l : Z) z : R [x]

pre (n 6= 0)

post z = Tnl(r)

whereNnl is specified in Section 3.2. The choice of concrete data-types is the same as for

the first implementation and the source code can be found in Section B.4.

The reification of the specifications given in Section 3.3 is even easier since Equation 3.16

is already expressed as a Laplace transform

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 57

rab 4 L
{
Qnala(r)Qnblb(r) r

3
}

s 4 na + nb
na nb

Rab (na : Z, la : Z, nb : Z, lb : Z) z : R

pre (na 6= 0) ∧ (nb 6= 0)

post z = rab

Again the choice of concrete data-types is the same as for the second implementation and

the specification ofQnl(r) can be found in Section 3.3. The source code for this implemen-

tation can be found in Section B.5.

3.4.3 Summary

In this section Equations 3.11 and 3.10 were reified to obtain a new specification which

made use of the Laplace transform. Using the operation decomposition techniques of Sec-

tion 3.1.2 and the data reification techniques of Section 3.2 we obtained a new implemen-

tation which was significantly faster. The resulting speed improvement is almost certainly

due to the selection of thelaplace operator by operation decomposition. As before we

continued the reification process to obtain another implementation based on Equation 3.16.

Unfortunately this is slower than the first version for the same reasons as given in Sec-

tion 3.3. No satisfaction arguments were given since they are essentially the same as those

found in previous sections.

In Section 3.4.1 we briefly looked at the subject of specification matching and its appli-

cation to this case study. We concluded that if this technique had been available to us we

may have been able to select thelaplace function during operation decomposition much

sooner in the design process and thus reduce the development time.

3.5 Summary and issues arising

In this chapter we have investigated the use of reification in the context of computer algebra

systems as a way of producing successively more efficient implementations from an initial

mathematical specification of the problem. We used the computation of the strengths of

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 58

emission and absorption lines for a hydrogen-like atomic oscillator as the problem to be

solved, and in Section 3.1 we made use of operation decomposition in the form of sim-

ple algebraic transformations to enable us to write suitable VDM specifications. From

these specifications, implementations were written to provide quantative comparisons on

the benefit of reifying abstract specifications into more concrete ones. In Section 3.4 we

discovered an alternative reification path which produced significantly faster implementa-

tions. We noted that the specification matching techniques of Wing [85] and Zaremski [88]

might have been useful in this respect by allowing us to select the alternative routine much

sooner in the development process.

The reification process that we used can be seen graphically in Figure 3.1 below. The main

path is fromAIM at the top toOBJECTIVE at the bottom but during the development

several other paths were taken such as the implementation of Equation 3.16. Each of the

implementations can be regarded as a reification of the the one above it in the diagram,

hence the proofs that one implementation satisfied another. Since the level 3 implemen-

tation does not satisfy the level 2 implementation (see Section 3.3.3) due to the choice of

concrete data-types, the reification path is marked by a curly arrow. Clearly one does not

need to restrict reification to a linear chain of steps.

AIM

↓
Laplace 1 ← Equation 3.10 → Level 1

↓ ↓ ↓
Laplace 2 ← Equation 3.16 → Level 2

↓ ;

Equation 3.21 → Level 3

↓
OBJECTIVE

Figure 3.1: Reification Diagram of Case Study.

A number of issues arising from this case study are discussed next.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 59

3.5.1 Implementing real numbers

Implementers of programs requiring numerical results often come across the problem of

choosing a concrete data-type for a specification requiring the use of real numbers. For

many the number of solutions is severely limited by the chosen implementation language.

For example, C and Fortran can only support floating-point values of a finite precision

unless special libraries are available and thus the programmer has little choice but to use

them. Computer algebra languages such as that inaxi.om allow the implementer much

more freedom. In this case study all of the programs except the most efficient were able

to use theExpression(Integer) data-type which was able to represent the subset of

real numbers that were required without any approximations. This type is a natural way

of expressing real numbers since it is very close to the method used by mathematicians

using pen and paper. The interface specifications and the justification of the data reification

ensured that this was a valid choice.

The use of floating-point numbers as a concrete data-type for the reals is generally accept-

able but a full specification ought to deal with the approximations and facilitate reasoning

about the errors introduced. This is possible in theory but can be non-trivial (see, for exam-

ple [39]). Work on constructing and reasoning about the real numbers is a current research

topic [38] and here the power of computer algebra systems may be harnessed to aid theorem

provers [40]; a formal development of the IEEE floating-point system is given in [4].

3.5.2 Reification of computer algebra programs

In [50] reification is considered in two ways. Firstly data reification is used to transform

abstract data-types used in the specification into concrete data-types that can be easily im-

plemented in the chosen programming language. Secondly operation decomposition is

used to convert the operations relating to the abstract data-types into primitives available

to the implementer. Working with a computer algebra system such asaxi.om means that

the abstract data-types used in the specification are often available as concrete data-types

of the language, particularly for small scale applications. Thus data reification can be used

to select a particular data-type and to justify the choice.

With this case study there was little data reification involved except for the choice of a

concrete data-type for implementing real numbers. However, the algebraic specification

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 60

was successively reified from an abstract (and inefficient) level to the concrete producing

more efficient implementations at each stage. In fact most of the operator decomposition

involved the standard algebraic manipulations that a physicist would normally perform

when faced with similar equations even if they do not use this terminology.

3.5.3 Scaling up to larger programs

With larger applications the reification process is likely to be slow and probably very te-

dious. Data reification will probably play a biggerrôle than in this case study since the ab-

stract data-types used in the specification are probably not available as concrete data-types

in the implementation language at least at the top level. However, the use of formal meth-

ods and providing mathematical and/or logical justifications for any reification is likely to

reduce the number of errors introduced into the software. It also helps the developer to

gain insight into the problem before any code is actually written [78, page 124]. Once

programming has started, developers are unlikely to want to return to the design stage un-

less there are severe problems. Instead a workaround would be sought which could lead to

further problems in the future. Even with a full specification problems may be discovered,

but these ought to be solved more safely with the knowledge of how much of the system

will be affected by the change. The main obstacle facing anyone contemplating the formal

development of software for computer algebra systems is the sheer size of the problem and

machine assistance becomes increasingly more necessary. This subject is considered in

more detail elsewhere in this thesis.

3.5.4 Other implementation languages

Implementations in general purpose programming languages such as Fortran and C are

possible but require specially written libraries for representing and manipulating polyno-

mials. The author has produced C and Fortran versions of the second implementation of

Section 3.3 and the resulting code is around four times longer than theaxi.om versions.

However, these programs have the advantage of being compiled directly into machine code

and therefore execute extremely rapidly. An implementation written in Aldor would also

be possible assuming suitable libraries were available.

CHAPTER 3. REIFICATION FOR COMPUTER ALGEBRA SYSTEMS—A CASE STUDY 61

3.5.5 Limitations of computer algebra systems

In Section 3.1.3 we found that althoughaxi.omcan be used to develop programs quickly and

easily, it does have limitations. As a result we were unable to utiliseaxi.om to help with the

more difficult parts of operation decomposition of Section 3.1. However, the implementa-

tions which were produced benefited significantly from the types and functions thataxi.om

provides, such as the representation of polynomials and the integration functions. We also

noted that while systems such as Mathematica were able to solve integrals which were out-

side the scope ofaxi.om we were uncomfortable that unspecified assumptions were made

on various parameters. Thus even though Mathematica was able to compute the correct an-

swer to our problem we were left wondering if it would always make the same assumptions

that we did.

Chapter 4

Design of Larch/Aldor

In this chapter we describe the syntax and semantics of the Larch/Aldor BISL which forms

the central focus of our work. We begin in Section 4.1 by reviewing several existing Larch

BISLs, their syntax and particular features, and use the results to guide our discussion of

the requirements and design issues for such languages. In Section 4.2 we introduce the

syntax and semantics of Larch/Aldor, and then in Section 4.3 we write LSL specifications

of the Larch/Aldor store model based on the work of [12] for Larch/C. In contrast to their

work and in common with that of other Larch BISLs, the specification of our store model

is written entirely in LSL rather than as a translation from a specification language such as

Z. We finish the chapter by reviewing issues which the design of Larch/Aldor has raised

and suggesting future work.

An introduction to Aldor is given in Appendix A.

4.1 Introduction

Before we can design a new Larch BISL for Aldor andaxi.om, we must look first at ex-

isting Larch BISLs and investigate the issues which are involved, such as the structure of

annotated programs. We begin with a review of some existing members of the Larch BISL

family, highlighting their syntax and the features of the programming language they were

designed to work with. Next we consider the issues which specifically relate to the design

of Larch/Aldor, and the concept of a store model on which our logical theories are based.

62

CHAPTER 4. DESIGN OFLARCH/ALDOR 63

4.1.1 A review of existing Larch BISLs

In this section we examine briefly the syntax of several prominent Larch languages and

identify their main features. The results from this review will be used to mould the syntax

of Larch/Aldor since we wish to remain consistent with existing Larch BISLs where pos-

sible. As described in Section 1.3.3, the main purpose of a Larch BISL is to provide clear

and concise documentation for procedures and abstract data-type methods. At the time

of writing there are 11 Larch BISLs of which Larch/CLU [84] was the first. The others

are at various stages of development with perhaps Larch/C [36], Larch/Modula-3 [51] and

Larch/C++ [59] being the most well-known.

Although the Larch system was designed with tool support in mind, few of the Larch BISLs

actually have tools. Notable exceptions include the LcLint tool for Larch/C [24] and Pene-

lope for Larch/Ada [35].

Larch/CLU

Larch/CLU [84] was the first of the Larch family of BISLs and formed the basis for the syn-

tax and design of the others. CLU is a statically typed language with automatic garbage col-

lection and the features that Larch/CLU caters for include clusters (abstract data-types), ex-

ception handling, iterators and type-parameterised (polymorphic) procedures. Larch/CLU

specifications follow the syntactical structure of the CLU features which they are describ-

ing and are kept separate from the actual implementations. Larch/CLU uses the keywords

pre andpost to specify the pre- and post-conditions of a procedure andmutates to

specify objects whichmighthave their value modified by the procedure. Clusters may have

interface specifications—theuses clause provides a link to LSL traits while thepro-

vides clause defines a mapping from CLU types to LSL sorts and can be used to indicate

whether the ADT is mutable or not.

The changes clause is provided by Larch/CLU to indicate objects that may have their

bindings altered by the procedure which can occur whenownvariables (similar tostatic

variables in C) are used. Theremembers clause can be used to list anyown variables

which are defined by the procedure. CLU also provides universally quantified parametric

polymorphism and the Larch/CLUwhere clause may be used to impose restrictions on

the set of possible types that a procedure accepts. This allows the specifier to insist that any

CHAPTER 4. DESIGN OFLARCH/ALDOR 64

instantiation of a type parameter will provide certain operators.

Below is a fragment of a Larch/CLU specification of a stack abstract data-type showing

some of the concepts described above. It was abstracted from [84, page 154]:

stack = cluster is empty, grow, read
uses StackOfInt
provides mutable stack from StkI

empty = ...
read = ...
grow = proc(st:stack,i:int)

pre true
mutates st
post st’ = push(stˆ,iˆ)
end

end stack

In addition to the clauses described above, Larch/CLU provides several built-in operators

to assist specifiers. Themutates operator can be used to indicate which objects are

actually modified by the procedure while thenew operator specifies objects which are

newly created and are not aliased by an existing objects. Thereturns operator indicates

that the function terminates normally whilesignals is used to specify that an exception

is raised (abnormal termination).

Larch/C

The syntax of Larch/C [36] specifications is similar to that of Larch/CLU although the

keywords have been altered, perhaps to improve readability. One major difference is that

Larch/C (LCL) specifications are stored in files separate from the C implementations rather

than appearing in-line, or as separate declarations as they do in Larch/CLU. The motiva-

tion for this is that a typical C module often consists of a header file defining the module

interface and a source file containing its implementation. A typical module written using

Larch/C will use an LCL interface specification file in place of the standard C header file

(which can be mechanically created from the LCL file).

Pre- and post-conditions are introduced byrequires andensures clauses and possible

modifications to client visible state are declared using themodifies clause. Since C does

not provide any special facilities for abstract data-types, the features used in CLU cluster

CHAPTER 4. DESIGN OFLARCH/ALDOR 65

specifications are not available. Essentially Larch/C concentrates on issues of memory

management and modifications to client-visible state. Tan [80] added the concept of claims

(implications of the specification which implementations must satisfy) which could be used

for test-case generation or as lemmas for program verification. The semantics of Larch/C

were addressed formally by Chalin in [12] which helped to resolve some inconsistencies.

Their work is used as the basis of the Larch/Aldor store model (see Section 4.3).

Larch/C++

The ideas developed for Larch/C have been extended to Larch/C++ [59] and several new

operators have been added such asassigned() andallocated() . Larch/C++ sup-

ports both partial and total correctness interpretations (Larch BISL specifications normally

assume total correctness), and provides support for type invariants which allow the specifier

to make assertions about the way that values of a type may evolve during the lifetime of a

program. It is also being used as a vehicle for research into the inheritance and refinement

of interface specifications [58]. Originally Larch/C++ interface specifications were placed

in separate files just as they are in LCL but, more recently, examples using new comment

markers ‘//@ ’ and slightly different syntax suggest that C++ code could be annotated di-

rectly (see for example [56]). Below is a Larch/C++ specification of a function which is

intended to compute integer square roots:

unsigned int IntegerSquareRoot(int n) throw(NegativeRoot);
//@ behavior
//@ {
//@ requires n >= 0;
//@ ensures returns
//@ /\ (result*result) <= n
//@ /\ ((result+1)*(result+1)) > n;
//@ also
//@ requires n < 0;
//@ ensures throws(NegativeRoot);
//@ modifies nothing;
//@ }

Note that the omission of themodifies clause in the first part of the specification is

equivalent to the statementmodifies nothing found in the second part. There-

turns predicate in the first post-condition asserts that the function terminates normally.

CHAPTER 4. DESIGN OFLARCH/ALDOR 66

Larch/Ada and Penelope

Penelope [35] is an environment for interactive program development and verification of

programs written using a subset of sequential Ada with Larch/Ada as the specification lan-

guage. The primary goal of Penelope is the incremental development of verified programs

and Larch/Ada has several constructs to support this which are not found in other Larch.

These include the use of assertions as cut-points which allow procedure bodies to be parti-

tioned into smaller units, each having their own pre- and post-conditions, and the addition

of loop invariants. Like Larch/CLU, declarations of functions and procedures are anno-

tated with interface specifications rather than the implementations themselves. However,

loop invariants and cut-points are placed within the body of the code along with commands

to guide the proof attempts of Penelope.

Penelope uses a syntax-directed editor which automatically generates verification condi-

tions from the program being written. The user has the option of inspecting and attempting

to discharge these verification conditions at any time and may decide to add extra lemmas

or commands as annotations to their program as a result. Each time the user makes a change

to the program the editor will perform semantic checking and update the set of verification

conditions accordingly. The verification condition generator is based on predicate trans-

formers which generate pre-conditions for a program fragment given a post-condition. The

pre-conditions created with this technique are not the weakest pre-conditions and depend on

the annotations of the program fragment. In contrast to the other Larch BISLs, Larch/Ada

assumes a partial correctness of specifications and makes no attempt to deal with termina-

tion. The syntax of Larch/Ada also differs significantly from other Larch BISLs as can be

seen in the following example from [35]:

FUNCTION bin_search(a: intarray; m, n, x: integer)
RETURN integer;
--| WHERE
--| IN sorted(a, m, n)
--| RETURN k such that k>=m and k<=n and a[k]=x;
--| RAISE not_present <=> IN not present(x,a,m,n);
--| END WHERE;

The IN clause is the entry condition (pre-condition) while theRETURNclause places re-

strictions on the value returned by the function. TheRAISE clause allows the effects of

abnormal termination to be specified.

CHAPTER 4. DESIGN OFLARCH/ALDOR 67

Larch/Speckle

Speckle [82] is a compiler for a subset of CLU which makes use of specifications to perform

optimisations which are not possible for traditional compilers. The Larch/Speckle language

was specifically designed for the compiler and is therefore closely related to Larch/CLU.

Speckle programs may contain procedures which have one or more special implementa-

tions in addition to a default implementation. The special implementations each have a

guard predicate which specifies the conditions under which they may be used. The Speckle

compiler uses its knowledge of the program state at the point of each procedure invocation

to select the first specialised implementation whose guard is satisfied. If none of the guards

can be shown to be true then the default implementation is used. Information about the pro-

gram state is obtained from a control-flow graph which is constructed using the interface

specifications of procedures. The pre-conditions of procedures are assumed to hold before

they are called and the post-conditions are used to define the program state afterwards.

Larch/Modula-3

Like CLU, Modula-3 has automatic garbage collection and so Larch/Modula-3 [51] does

not need to provide support for the specification of memory management facilities like

Larch/C and Larch/C++ do. However, it does permit the specification of concurrent pro-

cesses as well as dealing with exception handling and sub-typing with specification in-

heritance. Larch/Modula-3 also allows client visible state to be specified as read-only or

write-only in a similar way to the interface specifications of VDM [50]. The semantics of

the language have been defined in terms of a translation into LSL [51].

Larch/ML

Although ML is primarily a functional programming language, itdoeshave concept of state

and it is this that Larch/ML [85] aims to capture. Since ML has a formal semantics, rea-

soning about Larch/ML programs ought to be simpler than those of Larch/C for example.

Larch/ML provides support for exceptions and the specification of higher-order functions.

One unusual feature is that type inference must be applied to its specifications since the

meaning of an identifier depends on the context in which it is used.

CHAPTER 4. DESIGN OFLARCH/ALDOR 68

Other Larch BISLs

Other Larch languages include Larch/Smalltalk [14] which has been used to investigate

the use of specification browsers while Larch/Corba [77] and GCIL [61] are concerned

with concurrency issues. Larch/VHDL has been used to model the imperative aspects of

integrated circuit design such as heat dissipation.

4.1.2 Requirements and design issues

In Section 4.1.1 we examined several existing Larch BISLs in detail with the aim of high-

lighting their syntax and the different programming language features they have been de-

signed to work with. Using the results of this survey we present briefly some of the design

decisions involved with creating a new Larch BISL. Later in Section 4.2 we will define the

chosen syntax of Larch/Aldor and in Section 4.3 we construct a store model for it.

Syntax issues

The syntax of a Larch BISL is an important issue: users must be able to construct spec-

ifications without needing to continually refer to a manual. Thus the syntax needs to be

natural and must not hinder the user. Ideally all Larch BISLs would share the same basic

keywords but as we have seen in Section 4.1.1 this has not happened. However, the format

of specifications is the same consisting of one or more clauses, each preceded by a keyword

to define its meaning. Likewise there ought to be a common set of pre-defined operators or

predicates such asdefined() or modified() .

Related to this is the issue of whether new clauses ought to be defined to help mechanical

checkers or the user. For example, the meaning of the LCL statementtrashes(x) is

that the value of ‘x ’ may not be referenced anymore. However, it may be desirable to

define atrashes clause with similar semantics to themodifies clause which clearly

indicates which objectsmight betrashed by a procedure. This technique is advocated

in [12] to eliminate a flaw in LCL arising from using the law of the excluded middle. For

example, if the predicate (trashes(x) ∨¬trashes(x)) is passed to a system which

automatically normalises all statements then it will reduce totrue and will probably be

discarded. The result is that the information that the identifierx might be trashedcannot

CHAPTER 4. DESIGN OFLARCH/ALDOR 69

be represented in such a system. Using atrashes clause avoids this problem since the

notion that an identifiermight be trashedcomes from the semantics of the clause.

Location of BISL specifications

What is the structure of annotated programs? In Larch/C and Larch/C++ BISL annota-

tions are stored in separate files while in Larch/CLU they are appended to procedure and

function declarations. Larch/Ada takes this a step further by allowing blocks of code to

be annotated as well. The advantage of using separate files is that they can be distributed

to users along with pre-compiled libraries of code. This provides both the syntax and the

semantics of the routines without the user needing to see the implementation. With inline

specifications it may be necessary to construct a tool to automatically extract procedure

interface specifications for distribution as documentation.

The issue of the structure of annotated programs is closely related to the granularity of

BISL specifications. For example, Larch/Ada allows fine-grained specification by allowing

arbitrary blocks of code to be annotated but Larch/C does not and only provides course-

grained annotations.

Higher-order statements

Annotations for a language such as Aldor where functions and types are first class values

can pose problems when the BISL is based on first order logic. Although there are obvi-

ously situations where statements are unavoidably higher-order, they can be often avoided

by interpreting specifications about functions and types as statements about an instance of

them rather than about all possible functions or types. For example, given the following

definition of thetwice function:

twice(AType:Type, func: AnyType -> AType)(x:AType):AType ==
func(func(x));

any statements about the parameter ‘func ’ may be interpreted as first order statements

about a particular function whose value is currently unknown. This is exactly the same

CHAPTER 4. DESIGN OFLARCH/ALDOR 70

mechanism that LSL uses for parameterised traits—the trait parameters are simply names

for substitutions which are applied when the trait is specialised.

Store model

At first sight it would seem sufficient to simply define the syntax and semantics of spec-

ifications written using Larch/Aldor. However, as described in the previous sections, the

meaning of Larch BISL specifications is provided by the underlying LSL traits: these traits

represent the model of the store of the programming language being used and their high-

level operations enable Larch BISL specifications to be written concisely. These high-level

operations are defined in terms of operations which relate objects to the values associated

with them at any moment during the execution of the program. We define the store model

for Larch/Aldor later in Section 4.3.

Other issues

The programming language which the Larch BISL is aimed at plays a significant part in its

design. Specific features such as concurrency, the provision of abstract data-types, higher-

order functions and types as values will all play a part. The semantics of inheritance in the

programming language (if appropriate) will dictate the way in which interface specifica-

tions may be inherited and care must be taken to ensure that inconsistencies do not arise as

a result.

What are the semantics of BISL specifications—are they based on total or partial correct-

ness? If total correctness is used then functions whose pre-conditions are satisfiedmust

terminate and do so in a state where the post-condition holds. In contrast, partial correct-

ness means that functions whose pre-conditions are satisfiedmight terminate and that if

they do then it will be in a state where the post-condition holds. Clearly a total-correctness

view precludes the annotation of functions that do not terminate (for example theabort

function in C). On the other hand a partial-correctness view cannot express the fact that a

function will always terminate, even when the pre-condition holds.

Some Larch BISLs use total correctness while others use partial correctness. However,

Larch/C++ appears to be unique by allowing the specifier to determine correctness inter-

CHAPTER 4. DESIGN OFLARCH/ALDOR 71

pretation of arequires /ensures block. By combining these it is possible to capture

the conditions of termination more precisely—the total correctness interpretation can be

used to identify the conditions under which the function will always terminate while the

partial correctness interpretation used to identify when it it will never terminate.

4.2 Syntax and semantics of Larch/Aldor

In this section we define the syntax of Larch/Aldor which is used throughout this thesis.

It is by no means a complete and final description and may be developed and extended

in the future. However, we believe that it is sufficient to express many, if not all, the

concepts found in existing Larch BISLs. We begin in Section 4.2.1 with an extended BNF

definition of Larch/Aldor interface specifications for Aldor functions. This is augmented in

Section 4.2.2 with a description of the extra features for writing specifications about loops.

Then in Sections 4.2.3 and 4.2.4 we consider the format of specifications for domains and

categories. In Section 4.2.5 we extend the description of function specifications to provide

support for functions as parameters and finally in Section 4.2.6 we decide where all these

specifications will “live” and how they will be associated with the Aldor source code that

they are describing.

4.2.1 Functions

Perhaps the most important aspect of any programming language is the support for func-

tions and/or procedures. As a result most of the Larch BISLs concentrate on providing

interfaces to functions. We follow Larch/C++ [57] by allowing a specification to be split

into one or more segments where the behaviour of a given segment is based upon its pre-

condition. If the specification is required to be complete then all cases must be covered,

i.e. the disjunction of all the pre-conditions must be a tautology. To prevent ambiguity,

each pre-condition ought to be distinct from all the others unless the behaviour of each

“overlapping” specification is identical under the conditions which they overlap.

Figure 4.1 shows the extended BNF (EBNF) definition of Larch/Aldor specifications of

functions. Anitalic typeface is used to represent non-terminals whileteletype is used

for terminals (quote marks are sometimes used for clarity). The Kleene star “∗” indicates

CHAPTER 4. DESIGN OFLARCH/ALDOR 72

specification::= uses-block plain-block also-block
uses-block ::= uses-tag uses-clause| ε
uses-clause ::= LSL traits with renaming of Aldor domains
also-block ::= also-tag specification| ε
plain-block ::= clause∗

clause ::= list-clause| logic-clause
list-clause ::= list-tag identifiers
logic-clause ::= logical-tag expr
expr ::= expra expr1
expr1 ::= binary-op expra | ε
expra ::= exprb expr2
expr2 ::= “=>” expra | ε
exprb ::= exprc expr3
expr3 ::= “ \/ ” exprb | ε
exprc ::= exprd expr4
expr4 ::= “ /\ ” exprc | ε
exprd ::= expre expr5
expr5 ::= “=” expre | ε
expre ::= “˜ ” exprf | exprf
exprf ::= id “ (” exprs“) ” | “ (” expr “) ” | id | number
exprs ::= expr expr-list| ε
expr-list ::= “ , ” expr expr-list| ε
identifiers ::= nothing | id id-list
id-list ::= “ , ” id id-list | ε
id ::= “0” | “1” | [a-z , A-Z] [a-z , A-Z, 0-9]∗ [’ ,ˆ]+

logic-tag ::= requires | ensures | invariant
list-tag ::= modifies | trashes
uses-tag ::= uses | semantics
also-tag ::= and | also
binary-op ::= Any binary operator except:∧, ∨, = and⇒
number ::= Any number, usually an integer

Figure 4.1: EBNF Definition of Larch/Aldor Function Specifications

that the preceding term may occur zero or more times while a “+” indicates that the term

can occur at most once. Terms in square brackets are used to denote a choice from the set

of possible terms. For example, the term [a-z, 0-9] represents any single lower-case letter

or any single digit. Appending a Kleene star to such a term represents zero or more occur-

rences of (possibly different) lower-case letters or digits. The termε represents nothing or

emptiness.

CHAPTER 4. DESIGN OFLARCH/ALDOR 73

Intuitively, a Larch/Aldor interface specification consists of a sequence of clauses, each

starting with a tag such asrequires followed by a logical expression or a list of identi-

fiers. Our EBNF definition is not sufficiently powerful to enable us to specify that each type

of clause within aplain-blockcan be used at most once,i.e. we cannot have twoensures

together. We could have defined an EBNF choice operator to deal with this but we can see

little benefit.

The definition of logical expressions is such that the logical connectives bind less strongly

than other binary operators. However, logical equality binds more strongly than conjunc-

tion and disjunction; negation and function application have the strongest bindings although

the use of parenthesis may be used to alter this. In the following sections we define the se-

mantics of the clauses which are shown in Figure 4.1.

Requires

The requires clause defines the pre-condition of the function being annotated. Identi-

fiers appearing in this clause represent the values of program variables visible in the out-

ermost scope level of the function body, in the state immediately before the function is

invoked. All the other clauses in the specification block assume that the pre-condition is

true. If it is not then the other clauses in the block may or may not define the behaviour of

the function. Thus therequires clause acts as a guard to the other clauses.

Ensures

This is the post-condition which will hold in the state after the function terminates provided

that the pre-condition holds before the function is invoked. In our definition here we do not

assume the specification represents partial or total correctness.

Invariant

Invariant clauses have already been used in some Larch BISLs (such as Larch/C++), but

Larch/Aldor is unique in allowing them to be associated with functions. The invariant

specified by this clause is defined to be true at all times throughout the lifetime of the

CHAPTER 4. DESIGN OFLARCH/ALDOR 74

objects to which it refers. Its purpose is to allow statements to be made about objects

visible to the body of the function which may continue to exist after the function itself has

terminated. Possible target objects include those which are created dynamically (fluid)

and those which have been declared in an outer scope (free variables).

It is important to note that the pre-state of objects listed in this clause is the state that they

were in before the function was invoked. Likewise the post-state is the state that they are

in after the function terminates.

Modifies

The identifiers listed in this clause represent client visible state whichmaybe modified by

the function during its execution. A function is permitted to execute without modifying any

of the identifiers specified but may not modify any others. Note that the current definition

of this clause only allows objects to be referred to by simple identifiers. It does not provide

support for array or record elements. This is to simplify the EBNF definitions.

Trashes

The objects referenced by the identifiers listed in this clause may not be used by the client

once the function terminates. This may be due to the fact that the memory associated with

the object has been released back to the operating system. It may also be used to specify

that the object is being used as a private workspace by the function and the client must not

refer to it any more. Again the current definition only permits simple identifiers (see the

description ofmodifies above).

Uses

This clause allows BISL specifications to refer to LSL traits where renaming and param-

eterisation provides a link between Aldor domains and LSL sorts. For example in the

following Larch/Aldor program:

CHAPTER 4. DESIGN OFLARCH/ALDOR 75

++} uses SetTrait(Integer for E, Set(Integer) for C);
++} modifies nothing;
++} ensures result = (x \in s);
member?(x:Integer, s:Set(Integer)):Boolean == { ... }

the Aldor domainsInteger andSet(Integer) are associated with the LSL sortsE

andC respectively. These traits provide the semantics for LSL operators such as∈.

4.2.2 Loops

Since we wish to generate verification conditions from Aldor programs which make use of

Larch BISL specifications we must provide mechanisms for annotating programs at a much

finer level than just function definitions. The next stage is to allow annotation of loops—we

argue that a loop can be treated like a black-box whose behaviour can be described in the

same way as a function or procedure. A loop has pre- and post-conditions and during its

execution it may modify client-visible statei.e. any object which is accessible in the scope

where it is defined.

To assist with the checking of loop specifications we use two particular clauses, one old

and one new. Theinvariant clause associated with function specifications allows the

specifier to supply a loop invariant. This is a logical expression which will be satisfied

throughout the execution of loop and we require that the evaluation of the loop test must

not affect the validity of the loop invariant. Normally an invariant would only refer to

objects in any state (as opposed to the pre- or post-state) but occasionally it may be useful

to refer to values of objects before and after each iteration of the loop. To this end the

pre-state of an object is defined to be the state prior to the execution of the loop body after

the loop test; the post-state is the state after a single iteration and before the loop test.

The second clause (measure) is new and is intended to help with termination arguments.

It defines an expression whose value belonging to a well-founded set (monotonically de-

creasing with each iteration of the loop having a minimum value when the loop terminates).

Such expressions may enable the behaviour of the loop to be investigated using proof-by-

induction. The type of the expression is commonly a natural number.

CHAPTER 4. DESIGN OFLARCH/ALDOR 76

An example of these clauses is given below:

++} requires b = 0
++} modifies nothing;
++} ensures b = aˆ
++} invariant (aˆ + bˆ) = (a’ + b’)
++} measure a
while (a > 0) repeat {

b := b + 1;
a := a - 1;

}

The grammar describing loop specifications is the same as that given for functions in Fig-

ure 4.1 with the following changes and additions:

clause ::= list-clause| logic-clause| value-clause
value-clause::= value-tag expr
value-tag ::= measure

We note in passing that the type of the expression appearing avalue-clausemay have any

type. The measure expression has a type which has a total order on its values and which

has a finite minimal value.

4.2.3 Categories

Categories (see Appendix A.1) are closely related to LSL traits since they define the inter-

face of domains and define properties of domains. Unlike LSL traits, Aldor categories do

not provide axioms to describe the behaviour of exports of domains. However, one may ar-

gue that categories are where specifications ought to be placed, particularly if a category is

intended to have a particular meaning rather than simply acting as a template for packages.

Indeed this approach is adopted by Extended ML (see Section 1.4.1) which allows axioms

to be defined describing the behaviour of members of ML signatures.

Categories themselves will not have interface specifications associated with them directly.

However, category exports can be annotated since in many ways this is the natural place

for a specification of their intended behaviour. For consistency we require that the interface

CHAPTER 4. DESIGN OFLARCH/ALDOR 77

specifications of domain exports satisfy the interface specifications of the category exports

so it is important not make the category-level specifications too strong. Default operations

may have interface specifications and are treated in just the same way as specifications at the

domain level. The difference is that the default operations may be overwritten by a domain

so will the associated interface specification. Essentially the Aldor domain and category

inheritence mechanisms will apply to annotations just as they do with the implementations.

4.2.4 Domains

Many of the interesting domains inaxi.om and Aldor are implemented as functors, that is a

function which implements a mapping from types to types, and so it is natural to allow them

to be annotated with suitable BISL specifications. For the purposes of this work a domain

which is not parameterised by a type will be considered as a functor with no arguments

and can also be annotated. Since domains do not usually modify any client-visible state

when they are created themodifies clause would appear to be redundant. However, we

have decided to retain it since it may be useful to some users. The pre- and post-conditions

of domains will almost certainly be used to make statements about the types over which a

domain is parameterised. Although this would generally involve higher-order statements

these can be avoided by treating type parameters as place-holders for a substitution by a

particular domain instance.

As with loops, a domain interface specification can make use of theinvariant clause.

This is particularly useful since Aldor andaxi.om domains persist after the functor which

created them has terminated. Invariants associated with domains may place restrictions on

the values adopted by its internal state and on the values returned by its exports. The pre-

and post-states of objects representing an internal state are those states immediately before

and after the object is mutated.

4.2.5 Functions as parameters

The definition of function interface specifications given in Section 4.2.1 needs to be ex-

tended to deal with parameters which are themselves functions. This is achieved by noting

that functions are constant values and therefore their pre- and post-states are the same.

CHAPTER 4. DESIGN OFLARCH/ALDOR 78

Therefore we can define the behaviour of functions in terms of their would be defined

normally. The definition of Figure 4.1 will be extended with awhere clause:

clause ::= list-clause| logic-clause| where-clause
where-clause::= where-tag where-body
where-tag ::= where
where-body ::= Function definition withspecificationfor body

For example, consider thetwice function again which applies another function twice in

succession. We require that the function being applied is purei.e. it does not modify any

client visible state. This may be achieved as follows:

++} modifies nothing;
++} where
++} func(x:AType):AType == {
++} modifies nothing;
++} }
twice(AType:Type, func: AType -> AType)(x:AType):AType ==

func(func(x));

In this example we write thattwice is a pure function and that its function argumentfunc

is also a pure function. Note that if a function parameter also has function parameters then

we can usewhere in its specification and so forth.

4.2.6 Design issues

In this section we resolve some of the remaining design issues which were raised in Sec-

tion 4.1.2 The subject of higher-order functions has already been discussed in Section 4.2.5

and the provision of special BISL operators such asdefined() will be considered later

in Section 4.3.5. Here we deal with the location of BISL specifications, their context, their

granularity and their semantics.

Location

We have decided that Larch/Aldor specifications ought to be embedded in Aldor programs

as annotations rather than kept separately as in Larch/C. Not only does this enforce the idea

CHAPTER 4. DESIGN OFLARCH/ALDOR 79

of specifications-as-documentation but it ensures that there can be no confusion between

which specification is associated with which Aldor function or domain. One argument for

keeping annotations in a separate file as with Larch/C is that developers can distribute them

along with the program header files to provide interface documentation without revealing

details about the implementation. However, Aldor developers can annotate exports of cat-

egories and distribute these to achieve the same effect. Alternatively a tool could convert a

fully annotated domain into an annotated category definition.

Larch/Aldor annotations will appear as special documentation commentsbeforethe state-

ment which is being specified. There are times when it might be more aesthetically pleasing

to place annotations immediately after the opening brace of a block of statements or imme-

diately after the== operator, but this is not possible due to the syntax of Aldor.

Context

The context of any interface specification will usually be determined informally from its

definition. A mechanical checker is expected to know the location of all the necessary LSL

traits which provide the background theory to the specification. However, the specifier can

explicitly define which traits are used through theuses clause described in Section 4.2.1.

Granularity

With the exception of Larch/Ada, Larch BISLs are course-grained since the smallest pro-

gram unit that can be specified is a function. We permit arbitrary Aldor program statements

to be annotated providing the user with fine-grained specification. At present we provide

no support for cut-points or intermediate assertions but their effect can be achieved by

annotating a statement such as an empty block.

Partial or total correctness?

Larch/Aldor specifications are total correctness statements. We have not provided a way

of allowing partial correctness statements to be made and this is left for future work. We

would expect to follow the syntax of Larch/C++ [59] in this matter.

CHAPTER 4. DESIGN OFLARCH/ALDOR 80

4.3 Larch/Aldor store model

In this section we write down the LSL model for the Larch/Aldor store which will form the

basis for Larch/Aldor BISL specifications. We begin in Section 4.3.1 by describing how

the model is constructed and structured. We have used the LCL store model of Chalin [12]

to guide us since it has many of the features that we require and was specifically designed

with the idea of the Larch methodology in mind. Like [12] our aim is to construct a fairly

general store model suitable for use with a variety of different imperative programming

languages. This is tailored to Aldor through the specification of its basic domains. Then

in Section 4.3.2 introduce a model of the unsorted store and object dependencies; this is fol-

lowed in Section 4.3.3 with the specification of sorts and the sorted store. In Section 4.3.4

the model is completed by linking LSL sorts used in Larch/Aldor specifications to the sorts

in our model. Finally in Section 4.3.5 we describe how the model may be used and write

specifications of a few primitive Aldor domains by way of example. Specification of other

domains can be found in the appendices.

4.3.1 Overview

A formal model of computation is needed to provide a logical basis for reasoning about

Larch/Aldor specifications, for example by providing meaning to verification conditions.

The model will identify and capture concepts such as object dependency, well-definedness

and the imperative nature of the Aldor language. The model for a programming language

that we follow here divides the program state into two parts.

The first part is referred to as the environment and represents bindings from identifiers and

otherlvaluesused in the program, to objects (possibly overlapping regions of memory). In

any given scope the environment mapping is fixed. The second part is the store which is

modeled here: it allows the time-dependentnature of imperative programs to be considered

in a time-independentmanner, mapping objects to values in a given store or program state.

The mutation of the value of an object produces a new store in which the values of the

unchanged objects are the same as in the original store and the values of the mutated objects

reflect the new program state.

Usually one would define the model of the store using a specification system which is based

CHAPTER 4. DESIGN OFLARCH/ALDOR 81

on higher-order logic such as Z [72] or PVS [68]. This is because some statements, such as

those which involve reasoning about types and sorts, are naturally higher-order. However,

store models for other Larch BISLs such as LCL [80], LC++ [57] and LM3 [51] have used

LSL even though this is based on first-order logic. In contrast to this [12] uses Z to specify

their detailed model of the LCL store with a translation into LSL.

In spite of the drawbacks, the author has chosen to use LSL for the Larch/Aldor store model

and have used [12] as a guide. The traits that we give in Section 4.3.2 and onwards are

essentially divided in the same way as in [12]. At times we deviate from their structure since

we have chosen not to use Knuth’s Web system. We also define certain axioms differently,

usually by adding or removing logical implication and using logical equivalence instead.

As in [12] we do not attempt to specify the environment. Instead we assume that the

mapping from identifiers to objects will be undertaken by whoever, or whatever, translates

the Larch/Aldor specifications into LSL or LP.

Before modeling the Larch/Aldor store we need to consider how Aldor categories, domains

and functions might be dealt with in such a formalisation. As mentioned at in previous

chapters and in Appendix A, the main feature that distinguishes Aldor from other imper-

ative programming languages is its two-level object model. Since the LCL store model

in [12] was designed for a single-level object model we need to briefly consider how to

incorporate Aldor categories into our model and how to deal with the fact that types and

functions are first class values.

Categories

Although Aldor categories are values of typeCategory and can therefore be assigned to

variables, their use in type-forming expressions, such as domain construction, is restricted:

in Aldor type expressions can only contain identifiers which have a constant value through-

out the scope in which the type occurs. Since all interesting category expressions are con-

stants, we do not need to incorporate them into the store model directly, even though they

appear to be present in the runtime store of an Aldor program. Instead, we use LSL traits

which model the categories found in Larch/Aldor specifications and use them to extend the

basic store model described later.

CHAPTER 4. DESIGN OFLARCH/ALDOR 82

Domains

Aldor domains representing abstract data types initially appear to present the same kind

of problems as categories but we are able to appeal to the type constancy of the language

to help us again—Aldor domains can be modeled by an LSL trait which is used to extend

the basic store model. Indeed this is the approach taken in [12] with LCL and other Larch

BISL authors.

Functions

Functions are immutable but since we are using first-order logic there is little that we can

usefully write about them in our model. It may prove useful in the future to define a simple

trait for functions from typeT1 to T2 with function application being the only operator.

This model of functions is fairly primitive although currying may improve matters. In fact

it may be possible (and worthwhile) to translate Larch/Aldor annotations into assertions

based on an LSL model of functions but we do not pursue this here.

4.3.2 Unsorted store model

We begin by defining a model of an unsorted store: a store whose values have no sorts

associated with them. Such values are of little use in themselves but this formalism allows

low-level coercions, such aspretend in Aldor, to be modelled easily. This is useful

because an unsorted value may correspond to several different sorted values. For example,

Aldor domains have two different sorts for their values: one being the sort used for the

internal representation and the other being the external view of the domain itself.

A store represents a single state of computation and associated with it is a finite set of

objects whose unsorted values are defined with respect to the store. Objects represent

lvalues, or (possibly overlapping) regions of memory: the environment provides a mapping

between identifiers, record fieldsetc, and these objects. We do not deal with pointer values

in this model: to do so we need to be able to map a pointer value in a specific store to an

object (or its value).

CHAPTER 4. DESIGN OFLARCH/ALDOR 83

UnsortedStore:trait

includes Set(Obj, Set[Obj])

introduces

empty : → UStore

mutate : Obj, UStore, UVal → UStore

value : Obj, UStore → UVal

objects : UStore → Set[Obj]

asserts

UStore generated by empty, mutate

UStore partitioned by value, objects

∀ u,u’:UStore, o, o1:Obj, v:UVal

objects(empty) == { };

objects(mutate(o, u, v)) == insert(o, objects(u));

value(o, mutate(o, u, v)) == v;

In [12] value is treated as a partial function defined only for objects which have values in

a given store. In contrast we view it as an under-specified total function: we do not expect

it to be applied unguarded to objects which do not have values in a given store.

Dependencies

In many imperative languages, the value of one object may depend on the value of other

objects in the store. If the value of an objectx can be changed by mutating the value of

objectx′ then we say thatx depends onx′. For example, the value of a record depends on

the values of its fields andvice versa. It is also useful to be able to express the fact that a

group of objects are mutually independenti.e. for any pair of objects in the group, neither

object depends on the other.

The existence of object dependencies means thatmutate may produce a new store in

which the values associated with more than one object are different from those in the orig-

inal store. Since we cannot specify this behaviour in our general model we are forced to

under-specifyvalue . However, for a store that models a particular program state, we hope

that additional axioms would enablevalue to be completely specified.

CHAPTER 4. DESIGN OFLARCH/ALDOR 84

Dependency:trait

includes Queue(Obj, Objects)

introduces

dependsOn : Obj, Obj → Bool

independent : Objects → Bool

independent : Obj, Objects → Bool

asserts

∀ s:Objects, o, o1:Obj

dependsOn(o, o);

independent(empty);

independent(append(o, s)) ==

independent(o, s) ∧ independent(s);

independent(o, empty);

independent(o, append(o1, s)) ==

¬dependsOn(o, o1) ∧ ¬dependsOn(o1, o)

∧ independent(o, s);

implies

Reflexive(dependsOn, Obj for T)

Our specification of object dependency is similar to that of [12]. The main difference is

that we have defined theindependent operators recursively which we believe helps to

simplify any reasoning involving this trait. In particular proof-by-induction ought to be

much easier since quantifiers do not appear in our definition.

4.3.3 Sorted store model

The unsorted view of the store allows the physical representation of the Larch/Aldor store

to be modeled at an abstract level but it does not permit an interpretation of the values them-

selves. In this section we introduce the notion of sorts and associate a sort attribute with

each object. Then we define our model of the sorted store and build on it with operations

to simplify its use in other traits.

Sorts

A sort defines the interpretation of unsorted values and although each object has a single

sort, the value of an object may be viewed as a value from other sorts. Furthermore, since

CHAPTER 4. DESIGN OFLARCH/ALDOR 85

an unsorted value may not be a valid representation of a sorted value we need to define an

operator to model this. We also introduce an operator which specifies the equality of two

unsorted values viewed as values belonging to a particular sort:

Object:trait

introduces

sortOf : Obj → Sort

Sort:trait

includes Object, Set(Obj, Set[Obj])

introduces

objects : Sort → Set[Obj]

validRep : Sort, UVal → Bool

equal : Sort, UVal, UVal → Bool

asserts

∀ o,o1,o2:Obj, s:Sort, u,u1,u2:UVal

(o1 = o2) ⇒ (sortOf(o1) = sortOf(o2));

(o ∈ objects(s)) == (s = sortOf(o));

validRep(s,u) ⇒ equal(s,u,u);

(validRep(s,u1) ∧ validRep(s,u2)) ⇒
(equal(s,u1,u2) = equal(s,u2,u1));

(validRep(s,u) ∧ validRep(s,u1) ∧ validRep(s,u2)) ⇒
((equal(s,u,u1) ∧ equal(s,u1,u2)) ⇒ equal(s,u,u2));

The objects operator gives access to the set of all objects having a given sort while

validRep is used to determine whether a given unsorted value is a valid representation

of a value from the specified sort. Note that in [12] an additional equality operator is defined

which allows unsorted values which have no valid sorted value to be compared. We have

not included this in our model since we can find no use for it. This does not prevent the

user from defining it later if it is found to be necessary.

Sorted store

Using the unsorted model and the specification of sorts from the previous section we can

introduce the sorted model of the store. Following [12] we include a notion of “well-

definedness”—an object is well-defined with respect to a given store if the value of the

object is a valid representation of a value from that object’s sort.

CHAPTER 4. DESIGN OFLARCH/ALDOR 86

SortedStore:trait

includes UnsortedStore(Store for UStore), Sort, Dependency

introduces

wellDefined: Obj, Store → Bool

asserts

∀ s:Store, o:Obj

wellDefined(o, s) ==

(o ∈ objects(s)) ∧ validRep(sortOf(o), value(o, s))

implies

converts wellDefined

Our approach to the specification of well-definedness differs from that of [12]. Rather than

defining a function whose value is the set of all well-defined objects in a particular store we

have chosen to provide a predicate which determines whether a particular object is well-

defined with respect to a given store. Again we believe that this may help to simplify any

reasoning involving this trait.

4.3.4 Sorted projection

The sorted model of the Larch/Aldor store given in the previous section is sufficient to

define the meaning of any Larch/Aldor specification which contains only static object-

dependency relationships. ThedependsOn function from Section 4.3.2 allows aggregate

data structures such as records, arrays and unions to be modeled while theindependent

functions can be used to capture the meaning of thefresh operator (fresh(x) states

that the value ofx is independent of the value of all other objects in a given store). To

cope with themodifies clause we need to be able to identify all the objects which are

associated with a given store (the pre- and post-states) and object dependencies.

However, we continue to follow [12] and specify a sorted projection of the store. This

projection provides a view of a sorted store seen as though it only contains objects of a

given LSL sort. The intention is that the projection provides a link between sorts used in

the LSL formalisation of a Larch/Aldor specification and the underlying model of the store.

CHAPTER 4. DESIGN OFLARCH/ALDOR 87

ProjectedOps(S):trait

introduces

raise: Obj → Obj[S]

lower: Obj[S] → Obj

sortName: S → Sort

abstract: UVal → S

SortedProjection(S):trait

includes SortedStore, ProjectedOps(S)

asserts

∀ v,v1:S, s:Sort, o,o1:Obj, ob, ob1:Obj[S], u,u1:UVal

sortName(v) == sortName(v1);

raise(lower(ob)) == ob;

sortOf(o) = sortName(v) ⇒ lower(raise(o)) = o;

lower(ob) = lower(ob1) == ob = ob1;

(sortOf(o) = sortName(v)) ∧ (sortOf(o1) = sortName(v)) ⇒
(raise(o) = raise(o1)) = (o = o1);

(s = sortName(v)) ∧ validRep(s, u) ∧ validRep(s, u1) ⇒
equal(s, u, u1) = (abstract(u) = abstract(u1));

∃ u (validRep(sortName(v), u) ∧ (v = abstract(u)));

In the specification above,raise andlower provide a way of converting between objects

viewed from the sorted projection (members of sortObj[S]) and objects viewed from the

underlying store (members of sortObj). In addition,abstract is a partial function

which is used to model the conversion of unsorted values into values belonging to the sort

being projected. The first axiom states that all values of the LSL sort being projected belong

to the same sort in our model. Since LSL is based on first-order logic we cannot state in

LSL the stronger axiom that distinct LSL sorts have distinct sorts in our model. Instead we

state as part of our meta-theory that for any two LSL sortsS1 andS2

∀ v1 :S1, v2 :S2 • (S1 = S2) ≡ (sortName(v1) = sortName(v2))

The second and third axioms show thatraise is the inverse oflower . It is important to

note that while the domain ofraise is equal to the range oflower andvice versa, the

domain ofraise is a subset of all objects in our model due to the projection. Thus any

application ofraise needs to be guarded such as we do above. The next two axioms relate

CHAPTER 4. DESIGN OFLARCH/ALDOR 88

equality between objects in the sorted store model with equality between objects viewed

from the sorted projection. Note that we claim thatraise andlower are bijective when

the domain ofraise is equal to the range oflower . This differs from [12] where they are

injective and surjective. The penultimate axiom links theequal operator from the sorted

store model to the LSL built-in equality operator for values in the projected LSL sort. The

final axiom states that every LSL value has at least one unsorted value in our model.

Promoted operators

To simplify still further the interface between the LSL formalisation of Larch/Aldor speci-

fications and our store model we promote three operators from the sorted store model to the

sorted projection: these arewellDefined , objects andvalue . As one might expect

each is defined in terms of its dual from the sorted store model andlower . In addition to

the axioms for these operators we give some useful lemmas.

Promotions(S):trait

includes SortedProjection(S), Set(Obj[S], Set[ObjS])

introduces

wellDefined: Obj[S], Store → Bool

objects: Store → Set[ObjS]

value: Obj[S], Store → S

asserts

∀ ob:Obj[S], s:Store

(ob ∈ objects(s)) == (lower(ob) ∈ objects(s));

wellDefined(ob, s) == wellDefined(lower(ob), s);

wellDefined(ob, s) ⇒
value(ob, s) = abstract(value(lower(ob), s));

implies

∀ o:Obj, s:Store, v:S

sortOf(o) = sortName(v) ⇒
(o ∈ objects(s)) = (raise(o) ∈ objects(s));

sortOf(o) = sortName(v) ⇒
wellDefined(o, s) == wellDefined(raise(o), s);

(sortOf(o) = sortName(v)) ∧ wellDefined(o, s) ⇒
(abstract(value(o, s)) = value(raise(o), s));

CHAPTER 4. DESIGN OFLARCH/ALDOR 89

The first axiom in the specification above states that if an object is a member of the set

of objects associated with the projected store then the corresponding object is a member

of the set associated with the underlying sorted store andvice versa. The second axiom

completely defines the behaviour of the promotedwellDefined operator while the final

axiom relates to the behaviour ofvalue . The lemmas are mirrors of these axioms which

arise becauseraise andlower are inverses. They are slightly complicated by the need

to restrict the domain ofraise .

Other properties

We finish our description of the store model by considering the set of objects associated

with all the stores in a given theory and two related properties. The first property is that we

have an infinite supply of objects which follows from the assumption that programs will not

run out of storage. Since Aldor uses automatic garbage-collection this is not unreasonable

and is certainly no worse than the same assumption made about C programs in [12]. The

second property is that the objects associated with a particular store are a subset of all the

objects associated with all stores. These properties are shown in the following trait:

OtherProperties(S):trait

includes Promotions

introduces

knownObjects: → Set[Obj]

asserts

∀ o:Obj, s:Store

∃ o:Obj (o /∈ knownObjects);

objects(s) ⊆ knownObjects;

One major drawback of this approach is thatknownObjects is strongly tied to the con-

cept of the sorted projection. We would prefer it to be independent but the trait hierarchy of

the model presented here prevents this. Unfortunately changing the structure of our model

may complicate its exposition and so we leave it as an exercise for the reader.

CHAPTER 4. DESIGN OFLARCH/ALDOR 90

4.3.5 Using the model

In the previous sections we have defined a model for the Larch/Aldor store based on the

Z and LSL specifications of the Larch/C store in [12]. The next stage is to extend the

model with the aim of writing a trait which can be used to provide meaning for LSL and

LP translations of Larch/Aldor interface specifications. We assume that such translations

will be written in terms of the sorted projection and so we need to do two things. Firstly

we need to specify operators such asfresh which can be used as useful shorthands in

Larch/Aldor and secondly we need to specify Aldor domains. This latter task is large and

there is neither time nor space to do this completely.

However, in [52] Kelsey has successfully constructed LSL specifications of the majority

of theaxi.om category hierarchy pictured inside the cover of [48]. In doing so Kelsey has

discovered some inconsistencies between the meaning ofaxi.om categories and the math-

ematical objects that they are supposed to represent. More importantly for our work these

specifications provide a large library of traits which we can draw upon. It is interesting

to note that in [52] a top-down approach has been adopted starting with the most general

axi.om categories such asSetCategory . We have begun with a model of the Aldor store

and must extend this upwards through the definition of basic types to provide support for

this library.

Useful Larch/Aldor operators

In Section 4.1.1 we encountered operators such asnew and returns which helped to

improve the conciseness and clarity of BISL specifications. Here we define the meaning of

operators available to Larch/Aldor specifiers.

In the trait below, thefresh operator is used to state that a given object is independent

of all other objects in the specified store. This is useful for specifying the behaviour of

program functions which construct new objects. Note that the freshness property does not

indicate whether the value of the object is well-defined, or even if the object is defined at

all in the store. Objects which have a value in a store are considered to be defined with

respect to that store and this is captured bydefined . Again note that this does not imply

that their value is well-defined.

CHAPTER 4. DESIGN OFLARCH/ALDOR 91

SpecialOperators:trait

includes Dependency, OtherProperties, UnsortedStore

introduces

fresh : Obj, Store → Bool

defined : Obj, Store → Bool

trashed : Obj, Store → Bool

asserts

∀ o, o1:Obj, s:Store

fresh(o, s) == independent(o, objects(s));

defined(o, s) == o ∈ objects(s);

The operatortrashes in the specification above is notable for the lack of axioms defining

its behaviour. It is intended to be used to state that the value associated with an object must

not be referenced by the program in the specified store. This could be modeled by extending

UnsortedStore to allow of object/value associations to be removed. However, this

would require thegenerated by clause to be augmented which could result in more

complicated induction proof attempts involving this core trait. We have chosen to under-

specify it instead.

4.3.6 Issues

In the previous sections we constructed an LSL model of the Aldor store and gave examples

of how it can be used to provide the background theory for Larch/Aldor specifications. We

have followed the work of [12] where a Larch/C store model is defined in Z and then

translated into LSL. In doing so we encountered a number of issues which we raise here.

Shortcomings

Two particular problems were noted during this work:

• From an aesthetic point of view it would be nice if the store model incorporated

categories, domains and functions as values which could be placed in the store as they

appear to be in Aldor. More practically the user of this model may find that the lack of

support for domains too restrictive for the programs they are writing specifications

CHAPTER 4. DESIGN OFLARCH/ALDOR 92

for but we do not anticipate this happening too often. However, we hope that our

model does not preclude future extensions to cope with any such deficiencies.

• The lack of higher-order expressions in LSL was troublesome at times. However, it

was really only missed at one point when we wished to state that distinct LSL sorts

are distinct Larch/Aldor sorts in our model. This problem was resolved by adding

it to the background theory and accept that one cannot reason with this axiom. One

other place where the first-order nature of LSL may create difficulties is with the

notion of finitenesse.g.when dealing with array objects.

In addition, we have not provided a formal model of the environment which mapslvalues

such as identifiers and record fields, onto objects. Nor have we provided a way for pointer

values in a given store to be mapped to an object associated with the store. Furthermore,

our model of object dependencies is weaker than we would like because there is no concept

that the value of one object might be contained in the value of another: we can only describe

when the values of objects overlap in memory. This means that there is little that we can

usefully say in our model about abstract data-types such as trees and other aggregates.

Soundness and completeness

We require our model to be sound,i.e. we cannot prove that something is true in our model

when it is actually false. Without this property any formalizations based on our model

would be meaningless since we would not have the “correct” model and so there would be

little or no point in using it.

On the other hand we are not too concerned about whether our model is completei.e. every

logical statement using our model can be shown to be either true or false. Specifications

are often not complete for a variety of reasons [60] and this model is no exception. For

example, consider theequal operator in theSort trait—it has only been defined for situ-

ations where the unsorted values are valid representations of a sorted value in the specified

sort. We have not defined what happens if the unsorted values are invalid representations

of a sorted value.

However, we have endeavoured to define a model in which as many operators as possible

are completely defined so that any reasoning based on this model will not be unduly com-

CHAPTER 4. DESIGN OFLARCH/ALDOR 93

plicated by under-specification. We feel that this model contains all the properties we want

and might be regarded as informally complete in a tongue-in-cheek manner.

4.3.7 Conclusions

Even though Chalin [12] has done most of the hard work in laying down the framework for

constructing a store model and then using that framework for LCL, producing a store model

for Larch/Aldor has not been easy. Occasionally the author attempted to adopt a slightly

different approach only to find that it was inappropriate. One area in which have have

differed is in the way that we have specified the notion of mutually independent objects.

While Chalin used relied on universally quantified statements about sets we have used a

completely recursive definition without quantifiers. This will almost certainly simplify

proof attempts and help to reduce the amount of user interaction required.

Another major difference between our model and that of Chalin is that we do not have a

notion ofactive objects. We found that this created more problems and ambiguities than it

resolved for a model of the Larch/Aldor store and so we changed the idea to usingknown

objects. The environment for a program then provides a much cleaner and better method of

determining the set of active objects—they are the objects which can be reached from the

environment.

Finally the Larch/Aldor store model needed to take into account the Aldor concepts of

categories, domains and functions as first class values. To a certain extent these issues have

been side-stepped because we were forced to take them outside of the store model since

we are using first-order logic. However, there is scope for them to be incorporated in the

future should the need arise.

4.3.8 Future work

Our model has a lot of room for extension and improvement, in particular we have not de-

scribed the environment which provides a mapping fromlvaluessuch as program variables

and record fields, into objects in the store model. We would also like to see the model of ob-

ject dependencies extended to include the concept that one object “contains” another. This

would make it easily to model and reason about trees and other aggregate data-structures.

CHAPTER 4. DESIGN OFLARCH/ALDOR 94

Another area that has not been fully addressed is a model of functions and their application.

This is also an area which does not appear to have been researched in the Larch community

to date (Wing [85] and Leavens [57] touch on the issue but do not pursue it further). Perhaps

this is because few of the existing Larch target languages allow functions to be used as first

class values like Aldor does. Related to this is the need for studying domains as values,

finding out what circumstances they are used in and what would be needed to include

them in our model. Other topics include the use of dependent types, fluid variables and

generators. More work needs to be done to to produce LSL traits for as many of the basic

Aldor domains as possible. These can then build upwards towards the work of [52] where

the majority of theaxi.om computer algebra libraries have been specified in LSL.

Looking further ahead the choice of which logical system to use to provide the semantics

of BISL specifications is open to future development. Changing to higher-order logic is

very appealing and may have a number of benefits. Possible candidates include HOL [34]

and PVS [68] (the PVS specification language fits nicely with the Larch approach).

4.4 Conclusions

In this chapter we began in Section 4.1.1 by reviewing some of the existing Larch BISLs,

looking at their syntax, semantics, granularity and the programming-language specific fea-

tures that they were designed to support. Most of them are superficially similar in syntax

and in the operators that they provide. Some of them store BISL specifications in separate

files akin to C header files while others such as Larch/C++ [57] embed them in special

comments. The latter approach appears to be the accepted method in recent times and we

have adopted it for Larch/Aldor. Many of the Larch BISLs are coarse-grained where the

smallest program unit that can be specified is the function. Larch/Ada [35] is one exception

and allows cut-points and assertions to be associated with any program statements. This

almost certainly follows from the fact that Larch/Ada was designed with program verifi-

cation in mind and for this reason we have adopted a similar approach for Larch/Aldor.

Unlike Larch/Ada however, Larch/Aldor does not provide support for guiding proofs of

VCs generated by mechanical checkers. This is simply because we are not designing a pro-

gram verification environment. Our goal is the generation of VCs and we do not involve

ourselves with how they will be discharged (if indeed they are). Then in Section 4.1.2 we

looked at the requirements and design issues associated with Larch BISLs, in particular the

CHAPTER 4. DESIGN OFLARCH/ALDOR 95

subject of syntax, where BISL specifications ought to live (whether in-line or in separate

files) and how higher order statements can be treated.

In Section 4.2 we began our description of Larch/Aldor by writing down EBNF definitions

of the annotation language. We concentrate mainly on function annotations and then ex-

tend the description to cover annotations of loops and domains. We decided that categories

did not need to be annotatedper sebut their exports (which are usually functions) may be.

Support for functions with functions as parameters is provided by thewhere clause which

allows the behaviour of function parameters to be specified in terms of their actual defini-

tion. Thus ifF is a parameter which is a function then thewhere clause allows a definition

of F to be provided with the function body replaced by its Larch/Aldor specification. We

require that an instance ofF satisfies itswhere specification. Finally we make several de-

sign decisions such as the location of Larch/Aldor specifications, their granularity and their

semantics. We decided that Larch/Aldor specifications would be embedded inside special

comments in Aldor programs and that any program statement can be annotated. A total

correctness interpretation is used although support for partial correctness may be added in

the future.

We finished this chapter with Section 4.3 which provides an LSL model of the Larch/Aldor

store. We followed the approach taken by [12] for Larch/C although our specifications are

written in LSL from scratch rather than as a translation from Z. Our model succeeds in

avoiding the use of quantifiers except in two places. We believe that this helps to simplify

any proof attempts which may be made using this model particularly involving traits such

asUnsortedStore andDependency .

The definition of the syntax of Larch/Aldor has not been completely formalised and there

are a number of areas which need to be made more precise in the future. One example of

this is the format of object identifiers—our description only allows simple identifiers to be

used although in general we need to be able to refer to elements of arrays or records and

function results. Similarly there are areas where the store model can be extended such as

to provide support for functions, generators and fluid variables. Also needed is a model of

the environment to provide a mapping from variables, array elements and record fields to

objects.

Chapter 5

Lightweight VC Generation

5.1 Introduction

In Chapter 4 we defined the syntax and semantics of Larch/Aldor BISL annotations and

in this chapter we introduce the idea of using lightweight program verification as a way

of improving the robustness of programs written using Larch/Aldor. Annotated programs

can be analysed, and from the information which has been deduced about the state of the

program at each statement, verification conditions (VCs) may be generated. These VCs are

logical statements which capture the validity of user-supplied pre-conditions, and if they

can be shown to be true then the user will have increased confidence that their program will

behave correctly according to its specification.

We begin in Section 5.2 by introducing the background to program verification: correct-

ness, VCs and the different types of program analysis which may be employed. Then in

Section 5.2.3 we describe our lightweight approach to program verification and in Sec-

tion 5.2.5 we suggest possible uses of VCs. Next in Section 5.3 we outline the design

decisions involved with the implementation of a lightweight VC generator, discuss the

decisions that were taken and provide an overview of the way that our prototype works.

Finally in Section 5.4 we review the status of our prototype and review related work.

96

CHAPTER 5. LIGHTWEIGHT VC GENERATION 97

5.2 Techniques

In this section we introduce several different techniques which can be used to generate

verification conditions from programs. We begin in Section 5.2.1 by defining what it means

for annotated programs to be correct and introduce the reader to verification conditions and

inference rules for programs based on the ideas of Hoare [42]. Then in Section 5.2.2 we

review the forwards and backwards approaches to program verification which are often

expounded in the literature before moving on to introduce our approach of lightweight

verification condition generation in Section 5.2.3. In Section 5.2.5 we highlight possible

uses of VCs and finish with a brief look at different theorem proving systems which might

be used to help the user discharge VCs that are generated from their programs.

5.2.1 Background

Here we define partial and total correctness, the notation that we will use in the rest of this

chapter and then introduce inference rules for verification condition generation.

Partial and total correctness

The notation{P} C {Q} states that the program fragmentC has the pre-conditionP and

post-conditionQ; P andQ are the specification ofC. Usually{P} C {Q} is interpreted as

a “partial correctness” statement. This means that ifC is executed in a state satisfyingP

andif it terminates then{P} C {Q} is true ifQ is satisfied by the state afterC has finished

executing. If{P} C {Q} given a “total correctness” interpretation then it must be partially

correct and if it is executed in a state satisfyingP thenC will terminate. Gordon [33] points

out that there is not a standard notation for total correctness. To avoid confusion [33] uses

{P} C {Q} for partial correctness and[P] C [Q] for total correctness. We will adopt this

notation here.

Verification conditions and inference rules

The traditional approach which is taken to prove{P} C {Q} is to reduce the statement to a

set of purely logical or mathematical formulae called “verification conditions” [33]. This

CHAPTER 5. LIGHTWEIGHT VC GENERATION 98

is achieved through the use of inference rules which allow the problem to be broken into

smaller fragments. For example, the rule for assignment of the value of an expressione to

the objectv can be written
P ⇒ Q [e/v]

{P} v := e {Q}

Reading from the bottom, this states that to prove{P} v := e {Q} we need to prove that

P ⇒ Q [e/v] whereQ [e/v] represents the formulaQ with every occurrence ofv replaced

with e. Alternatively we can write

Assignment Rule

The verification condition from

{P} v := e {Q} is P ⇒ Q [e/v]

For example, the partial correctness proof of{x = 0} x := x + 1 {x = 1} generates the VC

(x = 0)⇒ (x+ 1) = 1. As described earlier, the total correctness proof also requires that

the assignment terminatesi.e. the evaluation ofe terminates.

The generation of VCs must be firmly based in a logical system and inference rules such as

the one given above need to be carefully constructed for each type of action that a program

make take. While our assignment rule is fairly simple, rules for loops and function or pro-

cedure calls are more difficult, particularly in the presence of operations which have side-

effects. A nice introduction to program verification can be found in [62] while [30] provides

a more detailed review of different techniques for a variety of programming methodologies

including concurrency and non-determinism.

5.2.2 The traditional approach

As mentioned in the previous sections, the traditional approach to VC generation involves

reducing a partial correctness statement about a program to a conjunction of logical for-

mulæ which defines the correctness of the statement. In this section we consider two meth-

ods of VC generation, the first of which analyses programs from the start to the end while

the other does the reverse.

CHAPTER 5. LIGHTWEIGHT VC GENERATION 99

Forwards analysis

The forwards analysis of a partial correctness statement is one which appears to be the

most sensible at first. Given an annotated sequence{P} C0; C1; C2; . . . Cn {Q} we use an

inference rule which provides the semantics ofC0 to obtain the post-conditionQ0 which

holds afterC0 has terminated. Note thatQ0 may be a conjunction of terms which includes

P . This process is iterated to obtain the post-conditionQn and the verification condition is

Qn ⇒ Q. It is clear from the simple example below thatQn is the strongest post-condition

which follows fromP . It is also clear thatQn can contain a large number of terms, many

of which may be irrelevant. For example, given{true} x := 42; y := 23; {x > y} we can

apply forwards analysis as shown below in three steps reading from left to right:

pre

post

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{true}
x := 42;

y := 23;

{x > y}



{true}
x := 42;

{x = 42}
y := 23;

{x > y}



{true}
x := 42;

{x = 42}
y := 23;

{x = 42 ∧ y = 23}
{x > y}


From this we obtain the VC(x = 42) ∧ (y = 23)⇒ (x > y) which is trivial.

A major benefit of this approach is thatQn encapsulates all the information about the

program fragment which can be derived from the partial correctness statement using a

given set of inference rules. ThusQn represents a symbolic trace of the execution of the

program fragment. It may be argued thatQn could become too large to store or manipulate,

but with current hardware and software technology systems of thousands of equations can

be handled with relative ease. Furthermore, each term inQn is likely to be simple and

discharging VCs may be possible by a very naı̈ve normalisation process.

Backwards analysis

The backwards or goal-directed analysis of programs is more commonly used—the post-

conditionQ of the correctness statement is pushed backwards to obtain intermediate pre-

conditionsPi and eventually the weakest pre-conditionP0. The VC is thatP ⇒ P0.

CHAPTER 5. LIGHTWEIGHT VC GENERATION 100

Applying backwards analysis to the program fragment from the previous example gives:

pre

post

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{true}

x := 42;

y := 23;

{x > y}



{true}

x := 42;

{x > 23}
y := 23;

{x > y}



{true}
{42 > 23}
x := 42;

{x > 23}
y := 23;

{x > y}


This time we obtain the VCtrue⇒ (42 > 23) which is equivalent to that obtained from by

forwards analysis. Note that inconsistencies encountered during the analysis will result in

the weakest pre-conditionfalsewhich means that the correctness statement is false. Unlike

the forwards analysis described in the previous section we do not obtain much information

about the program itself and thus require less memory or storage to represent it. However,

this is a drawback if one requires something more than a simple “this VC implies the

correctness of the program”.

5.2.3 The lightweight approach

Our approach to verification condition generation is different from those described in the

previous section. The assignment rule which was given earlier is relatively simple but

the construction of rules for other features of a programming language such as Aldor is

not so easy. In particular, determining the VCs resulting from calling a procedure which

mutates its arguments is difficult. Instead we propose the use of lightweight verification

condition generation where user annotations (in particular those associated with procedures

and functions) are used to provide the operational semantics of program fragments instead

of inference rules based on the semantics of the programming language.

Using our previous notation,{P} C {Q} might represent the correctness of a standard li-

brary procedureC. In any context which executesCwe have the verification condition that

P is satisfied in this context. From this we can assume thatQ is satisfied in the new context

afterC has terminated and we useQ to define the new context. Forwards analysis of the

program is used to generate VCs from each pre-condition and new contexts from each post-

condition (it is unclear how backwards analysis can be applied here). This technique can be

applied recursively so that each program fragmentCcan be checked against its annotation

CHAPTER 5. LIGHTWEIGHT VC GENERATION 101

{P} {Q}. Note that in practice the VC generator may provide additional annotations which

can be derived from the semantics of the programming language so that it can increase the

number of useful VCs which can be generated from a given program.

Our justification for this approach comes from the area of computer algebra systems which

has motivated our work. We believe that it is more likely that programming errors will

be due incorrect application of functions or procedures than due to mistakes in the the

implementation of computer algebra routines. After all, many of the algorithms upon which

these systems are based have been well studied, sometimes for centuries.

As a simple example, consider a function to compute the integer square root:

++} requires ˜(x < 0);

++} ensures (r*r <= x) /\ (x < (r+1)*(r+1));

++} modifies nothing;

iqsrt: (x:Integer) -> (r:Integer);

We trust that the implementation of this function satisfies its specification (refer to Sec-

tion 4.2 for an explanation of the syntax and semantics), namely that

∀x • x ≥ 0⇒ isqrt(x) = b
√
xc

From a statement such as “a := isqrt(z) ” we generate the VC that¬(z < 0) holds

beforehand, and infer that(a ∗ a ≤ z) ∧ (z < (a+ 1) ∗ (a+ 1)) holds afterwards.

5.2.4 Multiple execution paths

The presence of multiple execution paths within the program fragment of a correctness

statement raises problems particularly when forwards analysis is used. For example, while

using forwards analysis we find that after the statement:

if (a < b) then

min := a;

else

min := b;

CHAPTER 5. LIGHTWEIGHT VC GENERATION 102

there are two possible values ofQn, namely(a < b) ⇒ (min = a) and¬ (a < b) ⇒
(min = b). Should these two paths merged by conjoining the twoQn predicates or should

the analyser keep the execution paths distinct risking a potential combinatorial explosion

in the number of program paths being maintained? If they are merged then the context

used for each VC may be very complicated involving several case splits whereas keeping

each path helps to keep the context as simple as possible at the expense of extra storage

requirements. It may be possible to alleviate the potential combinatorial explosion by merg-

ing paths which correspond to the same program state as well as through judicious use of

annotations by the user. For example if a block of program statements is annotated then

multiple paths within that block can be treated as a single path outside the block.

5.2.5 Using verification conditions

Once we have generated a set of verification conditions from an annotated program, what

can we do with them? Ideally we would proceed to prove that they were true but in practice

this may be infeasible. For example, the GAP4 CAS [31] contains a small module which

would generate an apparently simple verification condition. However, the proof of this

VC relies on the “Odd Order Theorem” whose proof occupied an entire 255 page issue of

the Pacific Journal of Mathematics [26]. Other examples might include statements about

continuity of mathematical functions or computational geometry.

Generating verification conditions by hand is tedious even for tiny programs so we hope

that they will be mechanically generated. Indeed later in Section 5.3 we describe our pro-

totype to do just that. Once the verification conditions have been generated then there are

various possibilities of what can happen next:

• An automated theorem prover or proof assistant could be used to help with proof

attempts of VCs. For example, mechanised proof tools could be used to quickly

eliminate trivial VCs leaving the user to concentrate on the remainder. These tools

are unlikely to be able to discharge all valid VCs automatically but they may be able

to assist the user with tedious tasks such as simplification or proof-by-cases.

• Obvious mistakes may be detected by a user more quickly than a machine. The

validity or otherwise of VCs may be easily decidable by inspection. For example the

statement(tanx) is-continuous-on(0, π) is clearly false and this can be easily seen

CHAPTER 5. LIGHTWEIGHT VC GENERATION 103

by the use of the graph oftanx on the interval(0, π). On the other hand, attempting

to prove this mechanically with a theorem prover is hard, requiring a model of the

real numbers which is a topic of active research [40, 47].

• Trivial VCs such as(x = a) ⇒ (x = a) could be automatically discharged by the

VC generator. Other VCs which are easily normalised to true using axioms from a

theory associated with the problem could also be dealt with in this way. The benefit is

that the user will not be inundated with numerous trivial VCs which make it difficult

to spot the interesting or important ones.

• The user may appeal to their specialist knowledge or use authoritative sources. For

example, the Odd Order Theorem mentioned above essentially states that a group

which has odd order is soluble. If this was generated as a VC then an expert could

accept that it is true and avoid a long and tedious proof from first principles.

• VCs may highlight additional constraints on the program that were omitted from

its specification. Rather than attempting to prove such VCs the user may decide to

augment the annotations appropriately. Even if they do not represent omissions the

user may still decide to extend the annotations and alter the original specification.

• Finally the user may simply decide to accept some VCs on trust especially if there

are other VCs which are considered to be more important or which merit further

investigation.

Proof attempts which fail to show whether a VC is valid or invalid may indicate omissions

from program annotations or from the background theory. In general though the VC might

simply be too difficult to prove and the additional knowledge required to prove might be

unavailable. VCs which are found to be invalid imply that there is a mistake, probably in

the program or annotations but possibly in the theory used during the proof. If all VCs can

be proved true then the user has increased confidence that their code behaves as expected

in situations where the pre-conditions are satisfied. However, since this is relative to the

specification it does not preclude the possibility of the program behaving in unexpected

ways if there is a mistake in the specifications.

CHAPTER 5. LIGHTWEIGHT VC GENERATION 104

5.3 A prototype lightweight VC generator

In this section we describe the design and implementation of a prototype VC generator

for use with Larch/Aldor programs. We begin in Section 5.3.1 by introducing the design

decisions which affect the development of such a tool. Then in Section 5.3.2 we report

on the current status of this tool, a lightweight VC generator which has been written in

Aldor itself. This is followed by Section 5.3.3 which describes changes that were made to

the Aldor compiler to support Larch/Aldor annotations and the way that the tool actually

works. Finally in Section 5.3.4 we look at the lessons learnt from the implementation of

the tool and then in Section 5.3.5 we review the decisions that we made during the design

and implementation, and suggest how the tool could be developed in the future.

5.3.1 Design decisions

As with any software engineering problem, there are a number of design decisions which

need to be made. Some of these are ostensibly simple but they may have far reaching

consequences for the usefulness of the VCs which are returned by our tool.

Architecture

Figure 5.1 shows the outline of the architecture that we would like our VC generator to

have. We envisage that a compiler for the target language would accept annotated pro-

grams as input and generate object files such as executables in the usual way. In addition

to any warning and error messages that might be produced, the augmented compiler could

automatically generate and display VCs. The compiler may also need to accept specifica-

tions which define the meaning of the program annotations as additional input. In the Larch

world this would be in the form of LSL traits.

This architecture is simple but since it is monolithic, its behaviour cannot be modified by

third parties. An alternative would be to allow the compiler to generator a representation

of the input program complete with annotations for types, specifications and source code

references (e.g.line numbers). This external representation could be analysed by external

tools which are able to rely on the fact that the program is legal according to the compiler.

CHAPTER 5. LIGHTWEIGHT VC GENERATION 105

Figure 5.1: Ideal VC Generator Architecture

Simplification of VCs

Should the VC generator automatically perform normalisation or simplification of VCs

before they are presented to the user? For example, given a complex VC that can easily be

reduced totrue, should the VC generator emit the original VC or nothing at all because the

VC was trivial? On one hand the original VC may contain terms which could provide the

user with useful information. However, too many trivial VCs may hide useful properties

amongst a lot of irrelevant ones. This is really a task for artificial intelligence but the VC

generator could provide ways for the user to control simplification to a certain degree.

Multiple paths

We mentioned in Section 5.2.4 that branch points and multiple paths create problems for

program analysers such as this. Should paths be merged or kept separate?

Object language of VCs

What output or object language should be used for VCs? If the VCs are going to be pro-

cessed by another tool such as an automated theorem prover then they need to be generated

in a format which can be understood by that tool. This means that VCs must either be pro-

duced in the object language of the tool or in a neutral format which can easily be translated

into the object language. One option would be to support more than one object language,

CHAPTER 5. LIGHTWEIGHT VC GENERATION 106

possibly including a neutral format such as LISP expressions.

Level of analysis

Should the analyser only process statements which occur at a specified level and use anno-

tations to determine the behaviour of loops and other block structures? Alternatively can

the analyser recurse into loop bodies and analyse them as separate units with respect to

their annotations? How deep ought this recursion be and ought the analysis be performed

breadth-first or depth-first?

Types within annotations

The issue of types within annotations is important. Ideally the analyser ought to be able

to infer the types of most symbols, either from their context or from the type of the pro-

gram identifiers which they represent. However, type inference and type checking are by

no means small tasks and so the analyser may force users to annotate all identifiers with

explicit type references.

Internal representation

Finally there is the issue of the internal data structures used by the analyser. In Section 5.3.2

we describe the use of a tree-based representation which mirrors the lexical structure of the

program being analysed. This has the benefit that it is easy to navigate and lends itself

to a simple recursive implementation. In addition there is a direct link between a node in

the tree and a line in the program source which can be used to provide a context for the

user. However, the lexical structure of a program does not completely correspond to the

flow of control during execution and it can present difficulties. A better alternative is to

use a control-flow graph similar to those used in compilers for performing optimisations.

Changes in program state always take place along an edge of the graph which are labeled

with formulæ describing its semantics. Nodes in the graph correspond to program con-

structs such as assignment, procedure call or loop (see the work of Vandevoorde [82] for

example).

CHAPTER 5. LIGHTWEIGHT VC GENERATION 107

5.3.2 Current status

As we have already mentioned, a prototype VC generator for Larch/Aldor has been imple-

mented in Aldor. This tool is a two-pass analyser which is able to accept simple annotated

programs and generates files in the LP object language. The output files comprise of asser-

tions which describe the state of the program after the execution of each statement. These

statements are interspersed with VCs in the form of LP “prove ” commands. In this sec-

tion we describe the design decisions that were made that led to this implementation.

Architecture

The architecture that we have adopted for our prototype analyser (see Figure 5.2) is notice-

ably different to the “ideal” architecture of Figure 5.1. An existing Aldor compiler has been

modified so that it can produce an annotated parse tree as well as executables depending

on the setting of command line switches. The lightweight VC generator has been imple-

mented as a separate tool that accepts the parse tree from the compiler instead of as an extra

compiler phase.

Figure 5.2: Prototype VC Generator Architecture

This approach was chosen for pragmatic reasons—on the fastest machine that we had at our

disposal (a Sun SparcStation-10), it took between 4 and 8 hours for a complete rebuild of

CHAPTER 5. LIGHTWEIGHT VC GENERATION 108

version 1.1.7 of the Aldor compiler, libraries and test suite. The compiler distribution was

well structured which meant that small changes to the source code only took a few minutes

to rebuild the compiler executable. However, we decided that significant changes to the

compiler would take too long to implement properly given the compilation time. Since

there were existing facilities for generating parse trees in LISP format we decided to use

them so that the compiler could produce similar output where each symbol was annotated

with its type and user-supplied specification. This would require the least amount of change

to the original compiler.

We decided that it would be better to make a number of relatively small changes to the

compiler so that an annotated parse tree could be generated using command line switches.

This output represents a syntactically and type-correct program and can be easily read in

by external tools. It is important to us that the external representation requires little or no

type inference since this is where a compiler can often spend much of its time.

Simplification of VCs

Our prototype does not perform any simplification or normalisation of VCs or statements

about the program state. Again this provides the user with as much information as possible

and does not make any assumptions about what normal form ought to be used or which

formulæ are “simpler” than others. Also any simplification that our tool might undertake

can be performed more efficiently by a proof assistant or automated theorem prover and

with a greater degree of user-control.

Multiple paths

The original version of the VC generator kept multiple execution paths distinct and a tool

was used to split the output into separate files where each file corresponded to a single exe-

cution path. Although this approach can suffer from combinatorial explosion we expected

that the user would be aware of the problem and take appropriate action. However, the lat-

est version of the VC generator adopts a different approach: assertions about the program

state are guarded (using logical implication) by the condition under which a particular path

may be followed. For anif-then-else statement, the guard is the conditional test for

statements executed for thethen branch and its negation for the other statements. Distinct

CHAPTER 5. LIGHTWEIGHT VC GENERATION 109

paths are merged using conjunction.

Object language of VCs

The object language of the LP proof assistant was chosen to represent VCs, primarily

because LP was available with the Larch distribution and because of local expertise. State-

ments about the program state appear as assertions while VCs are given asprove com-

mands. Due to the modular nature of our implementation we could use a different output

format simply by producing a different “output” object.

Level of analysis

At the moment our prototype only examines the statements appearing at the top level of a

program. If any statement has been annotated by the user with at least a post-condition then

the behaviour of that statement is obtained from the annotation. Otherwise the analyser will

recurse into the statement and analyse it just like any other statement. We would like the

user to be able to control the level of analysis directly but this not an easy problem to solve.

For example, how does the user refer to a particular program statement—line numbers are

subject to change and are not always easy to deduce.

Types within annotations

We have already noted that type checking and type inference is a significant task especially

for a language with the expressiveness of Aldor. As a result of this it was decided that

our prototype analyser would not perform type inference or type checking. Instead all

identifiers in user annotations must be given an explicit type which is taken on trust by the

analyser. This reduces the readability of annotations but we feel that this was a price worth

paying for a prototype.

Internal representation

The internal representation is a parse tree essentially the same as that generated by the aug-

mented Aldor compiler. Although this representation creates difficulties when analysing

CHAPTER 5. LIGHTWEIGHT VC GENERATION 110

loops the analysis of other Aldor constructs is easy and naturally recursive. During the

development of the prototype it was relatively straightforward to compare the internal data-

structure of the VC generator to the Aldor program it represented.

5.3.3 Implementation details

In this section we describe the implementation details of our lightweight VC generator

in more detail. We begin by briefly describing the changes that were made to the Aldor

compiler and then outline the two passes which the analyser makes over its input.

Compiler modifications

As mentioned earlier, the Aldor compiler already had facilities to produce the parse tree in

LISP format (as an AX file) but this format was not completely sufficient for our needs. The

most important factor was that the AX files did not contain any additional type information

above and beyond that which was present in the input source. Whereas the compiler could

perform type inference to extract these types using built-in algorithms, we could not. Thus

it made sense to allow the compiler to generate an annotated parse tree after type infer-

ence, where each identifier is decorated with its type declaration whenever it appears. This

means that the Larch/Aldor specification of a function is immediately available whenever

the function is applied and eliminates the need to examine libraries and other definitions to

obtain this information.

The decision to generate annotated parse trees allowed us to reduce the number of changes

which were needed to be made to the compiler to enable it to provide support for external

program analysis tools such as VC generators. In addition to the generation of the anno-

tated parse tree, we needed to extend the lexical and syntax analysers so that they could

recognise Larch/Aldor annotations and store them internally. This was achieved by defin-

ing a specification node for the parse tree which associated an annotation with a program

fragment. This was based on the existing nodes for recording documentation comments.

Other changes to the compiler were needed so that the new parse tree could be recognised

by the type inference, optimisation and object-generation phases. Essentially these were

minor alterations so that, for example, the type of a specification node was the same as the

type of the node being specified.

CHAPTER 5. LIGHTWEIGHT VC GENERATION 111

Originally we wanted Larch/Aldor annotations to appear immediately before the right-

hand side of any definitions (e.g.A == annotationB) and to appear immediately after any

declarations (e.g. in categories). However, while the latter was possible we discovered

that the former was not due to the grammar of Aldor. As a result of this, all annotations

must precede the declaration or definition of the identifier that they are referring to (see for

example, Section 5.2.3).

Algorithms

The high-level view of our VC generator is one of a two-pass analyser. In the first pass

we traverse the parse tree obtained from the compiler and pre-process all annotations while

in the second pass the VCs are generated. The pre-processing phase involves cleaning up

user-annotations and then renaming identifiers which appear in them so that their program

state is made explicit. For example, given the program fragment:

++} requires a > 0;
++} ensures a’ = aˆ + 2;
++} modifies a;
a := a + 2;

we note that the identifier ‘a’ in the pre-condition is strictly a reference to ‘a’ in its pre-

state,i.e. ‘aˆ ’. The modifiesclause tells us that at most the variable ‘a’ will be modified

and so we create two logical symbols—‘a_0 ’ and ‘a_1 ’ where the first represents ‘a’ in

its pre-state and the latter represents ‘a’ in its post-state. After renaming we have:

++} requires a_0 > 0;
++} ensures a_1 = a_0 + 2;
++} modifies a;
a := a + 2;

The pre-processing phase is recursive and as the recursion unwinds it is possible to check

for violations of themodifies clause. If an identifier has the pre-state suffixi then after

the pre-processing of the statement being annotated has completed this identifier must still

be in statei unless it appears in themodifies clause. To improve the results that the

VC generator can produce the pre-processing phase also creates internal annotations for

CHAPTER 5. LIGHTWEIGHT VC GENERATION 112

program statements based on the semantics of Aldor. An example is that an assignment

may be given a post-condition which states that the logical symbol representing the post-

state of the object being assigned to is equal to the symbol representing the value of the

expression being assigned and that the identifier has been modified.

Most of the pre-processing is concerned with simple yet fiddly housekeeping tasks: these

included tracking the state of Aldor symbols, and storing the names and types of logical

symbols in the parse tree at the point where they are first used. The annotation of if-then-

else and loop statements is quite involved since we need to be able to compare the state

of all objects at the start and end of each execution path, and make assertions about them.

Another source of considerable work was ensuring that each node in the program was as-

signed the correct type since the information obtained from the compiler only provided type

information about identifiers. This could have been resolved by extending the compiler out-

put but it was decided that a very simple type inferencing system using dynamic variables

would be sufficient. This only required one or two extra lines of code per function.

After pre-processing, the generation of VCs is fairly simple since the majority of the hard

work has already been performed. For each statement of the program the pre-conditions are

analysed to create VCs based on the knowledge of the current program state. If a statement

has not been annotated by the user with a post-condition then the analyser recurses to

generate VCs for the statement before proceeding with the next one. Finally the post-

condition is analysed to determine the new program state.

As a slightly longer example consider the following program fragment:

if (x <= y) then
max := y;

else
max := x;

If we assume that the symbols representing the identifiers ‘a’, ‘ b’ and ‘max’ are initially

in state 0 then the pre-processing phase will produce the following annotated program:

CHAPTER 5. LIGHTWEIGHT VC GENERATION 113

++} requires true;
++} ensures (result_0 = (x_0 < y_0)) /\
++} (result_0 => (max_3 = max_1)) /\
++} (˜result_0 => (max_3 = max_2));
++} modifies max;
if (x <= y) then

++} requires true;
++} ensures max_1 = y_0;
++} modifies max;
max := y;

else
++} requires true;
++} ensures max_2 = x_0;
++} modifies max;
max := x;

From this the VC generation phase generates the following LP script:

declare operators
result_0 : -> Bool
x_0, y_0, max_0, max_1, max_2, max_3 : -> Integer

..

assert
result_0 = (x_0 <= y_0);
max_1 = y_0;
max_2 = x_0;
result_0 => (max_3 = max_1);
˜(result_0) => (max_3 = max_2);

..

Gory details

In the previous sections we have described the design decisions that were made and pro-

vided an overview of the algorithms used in the implementation. Here we give specific

details on the actual size of the program that we have written and the time taken to write it.

The changes to the compiler took nearly 30 days to complete spread over a period of four

months. Some of this time was inevitably spent without making much forward progress:

the version of the Aldor compiler that we were working with contained 140000 lines of

C and, although the source was well structured, we often hit dead-ends. Furthermore, we

had to balance the effort required to write and debug functions to achieve our aims against

CHAPTER 5. LIGHTWEIGHT VC GENERATION 114

spending time to investigate whether any of the existing functions in the compiler could be

tailored to our needs.

The changes that were made to the compiler are summarised below. They correspond to

less than 500 lines of additional source code, including comments, blank lines and a few

debugging statements! Note that an AQ file is the object language of the VC generator, a

LISP representation of the annotated parse tree:

abnorm Ensures annotations are stored correctly in the parse tree

absyn Convert the parse tree into AQ format

axlobs Minor additions to support generation of AQ files

emit Minor additions to support generation of AQ files

genfoam Skip annotations when generating intermediate FOAM code

scan Lexical scanner extended to recognise++} tokens

scobind Scoping: minor additions to support annotations

stab Symbol table: minor additions to support annotations

syme Symbol meanings: additions to support annotations

ti Type inference: skip over annotations

token Internal token to represent++}

The verification condition generator took six months to develop and occupies about 8500

lines of Aldor. Roughly 3600 lines are blank or nearly blank, 1600 lines are comments

and 3300 lines are program statements. The source is divided into a number of different

modules and the proportion of code associated with the different tasks is:

20.8% Conversion of programs to and from AQ/LISP format

19.2% Parsing and representation of Larch/Aldor specifications

13.8% Annotation phase (adding suffices to identifiers)

11.1% Low-level functions for manipulating identifiers

7.5% Parsing of LISP expressions from text strings

5.0% Verification condition generation

4.7% Generation of LP scripts from VC information

4.5% Representation and storage of identifiers

13.4% Other functions, representation of logical expressionsetc

CHAPTER 5. LIGHTWEIGHT VC GENERATION 115

5.3.4 Lessons learned

As with any programming project, one does not often make continuous program from a

design through to the final implementation without taking a few wrong turnings. For exam-

ple, one may decide to experiment with a new technique or idea only to decide later that it

was unsuitable. In this section we summarise some of the points which may be of interest.

• Access to the source of the Aldor compiler was essential for the successful devel-

opment of the prototype VC generator. Without it we would have had to write our

own parser and type inferrer, which would have been infeasible. However, given

more time and a faster development machine that we began with, we believe that

integrating the VC generator with the rest of the compiler would provide significant

benefits. We would not have to convert from the external representation of parsed

Larch/Aldor programs into the internal representation of the VC generator, some-

thing that occupies nearly 30% of the source of our implementation. We would be in

a much better position to perform type-inference and type-checking of Larch/Aldor

annotations and one could even consider translating some annotations into runtime

checks where it was feasible.

• Representing Larch/Aldor programs using a data-structure which closely matches the

lexical structure of the source is not ideal. Although it allowed us to write elegant and

readable code for the VC generator using recursion, the presence of unconditional

branches within programs creates too many problems. With hindsight we believe

that programs can be represented better using flow-graphs similar to those adopted

by Vandevoorde [82]. However, our aim was to construct a prototype VC generator

and we believe that our choice of data structure and analysis method were the correct

ones for the task. The readability of our code, and the close coupling between the

internal representation and the original Larch/Aldor program, were important during

the early stages of development.

• We were surprised to discover that the most time consuming and intricate part of

the whole project was associated with the annotation phase of the VC generator.

This was the part of the program which adds annotations to statements that the VC

generator knows about such as assignments, and which ensures that each identifier in

the Larch/Aldor program is given a unique symbol each time it is mutated at runtime.

CHAPTER 5. LIGHTWEIGHT VC GENERATION 116

This phase takes up about 30% of the source code. If one adopts an approach which

requires the state of each program variable to be given a unique logical symbol then

great care needs to be taken during its design and implementation.

• Our prototype VC generator conjoins the information associated with if-then-else

statements rather than splitting the context into two. Keeping a single context that

records information about all possible paths significantly reduces the amount of out-

put that the VC generator produces. It also avoids issues of how to represent and

update multiple contexts and how to present them to the user. However, if the user

attempts to discharge VCs that were generated after an if-then-else statement then

they may have to deal with case-splits. At least this is an area in which theorem

provers are good at and can provide appropriate tools for dealing with them. Al-

though we preferred the approach of keeping different execution paths separate we

found that the execution time of the VC generator and the amount of output that it

produced were too large.

• Ironically we often found that our lightweight VC generator was turning into a “full”

VC generator. Our design philosophy was that statements that had been annotated by

the user would not be analysed any further. However, since the annotation phase was

able to generate annotations for several Aldor statements (based on their semantics),

there was a temptation to generate annotations for all statements. The issues of how

to merge the two types of annotations might be interesting to investigate further.

• Finally, the task of converting the VCs from their internal representation into the

object language of LP, the Larch Prover, was straightforward. Information obtained

from the post-conditions of annotations are translated into declarations of new logical

symbols and assertions that define their value. The VCs are obtained from the pre-

conditions of annotations and are translated into a command instructing LP to begin

a proof attempt. To assist the user, comments are used to associate assertions and

VCs with the name of the source file and the line at which it appears. We believe that

this type of conversion could be easily repeated for the object languages of different

theorem provers such as HOL [34] or PVS [68].

CHAPTER 5. LIGHTWEIGHT VC GENERATION 117

5.3.5 Conclusions and future work

In the previous section we gave an overview of the current status of our VC generator;

in this section we briefly review the benefits and drawbacks of the prototype and suggest

directions for future work.

We have identified three main problems with our prototype:

1. The internal representation of Aldor programs is a parse tree rather than a control

flow graph. While the former is ideal for analysis which is strictly lexical and which

needs to be linked to the original source code (i.e.so that VCs can be associated with

line numbers) it is less convenient for analysis which follows paths of execution. It

also complicates analysis of programs which contain jumps or raise exceptions, the

latter being a recent addition to Aldor.

2. Our prototype does not make any reference to the store model defined in Section 4.3

and therefore is unable to deal with concepts such as object dependency. Perhaps

more importantly, the store model would allow us to make statements about the re-

lationship between the store in the pre-state of a function and that in the post-state

without needing explicit state subscripts on all identifiers.

3. Lack of type checking and type inference of annotations.

Apart from these problems we believe that the prototype has been successful in helping us

to investigate the various design issues involved with constructing a lightweight VC gen-

erator. Furthermore many of these issues, such as dealing with branch points, are issues

which are also relevant to traditional VC generators. The issues of type checking and type

inference have not been considered very much in Larch literature to date and is touched on

briefly in [85]. Our experiments with multiple executions paths produced a tool in which

the output describes all paths simultaneously using guards on assertions about the program

state. However, earlier versions which produced a stream of output for each individual

execution path were very successful although the resulting files containing VCs and asser-

tions were numerous and large even for the simplest of examples. The execution time for

programs with only a few lines was also prohibitive.

At present the output of the prototype is in the object language of the Larch Prover and

care has been taken to keep the output as readable as possible. The LP script is divided

CHAPTER 5. LIGHTWEIGHT VC GENERATION 118

into sections with comments which give the name of the source file and the line number

associated with each symbol declaration, assertion and verification condition. Additional

comments indicate whether the LP commands have been generated from annotations au-

tomatically provided by the analyser or whether they are from the user annotations. The

program state is given in the form of LP assertions while the VCs themselves appear as

LP prove commands. This means that the output from the VC generator can be stored

and then passed as input to the Larch Prover. Often VCs can be proved automatically by

normalisation while VCs resulting from if-then-else statements can be tackled using proof

by cases. If enough information has been provided in the form of Larch/Aldor annotations,

and assuming that the VCs are provable, then LP may be able to do so automatically.

Unfortunately the prototype has not been developed enough to investigate non-trivial pro-

grams. At least another month of development time would be required to extend its capabil-

ities and to write specifications for basic data types such as records and lists. A significant

proportion of the execution time appears to be spent reading and parsing the input file—the

analysis and the generation of VCs does not require much computation. We believe that

incorporating the VC generator into the Aldor compiler would improve the performance

of VC generation to the extend that it could be comparable in runtime to the optimisation

phase of the compiler.

Our experience with this prototype has lead us to consider various options for future work.

Of particular interest is the possibility of including the VC generator into the Aldor com-

piler so that it can benefit from the type checking and type inference algorithms and can

have the potential to use its control-flow graphs. In this way Larch/Aldor annotations would

become an integral part of the language in a similar way to the annotations of Eiffel. There

would also be opportunities for storing the annotations in the compiled libraries. Since

the Aldor compiler performs a significant amount of inlining from pre-compiled libraries

there is the issue of “inlining specifications” and how this might affect their meaning (if the

optimiser is correct then their meaning ought to be unchanged). Indeed the optimiser may

be able to use procedure specifications to increase the performance of the resulting code as

demonstrated in [82].

Other possible areas of future research include the filtering and presentation of the VCs.

Users may wish to restrict the output to include only those VCs which refer to a particular

symbol or a region of the program. The description of the program state which our proto-

type currently produces could be analysed to provide a symbolic trace of values returned

CHAPTER 5. LIGHTWEIGHT VC GENERATION 119

by functions or assigned to variables.

5.4 Summary

In this chapter we introduced the subject of program verification. In Section 5.2.1 we

defined what we mean by partial and total correctness and verification conditions. Then in

Section 5.2.2 we gave a brief overview of the traditional method of VC generation which

use forwards or backwards program analysis. This was followed in Sections 5.2.3 and 5.2.5

by a description of our lightweight VC generation ideas and suggestions of how VCs might

be used in practice. In Section 5.3.1 the design of a lightweight VC generator was proposed

and was followed by details of our prototype VC generator for Larch/Aldor. Finally in

Section 5.3.5 we reviewed the prototype and provided suggestions for future research.

As we have already mentioned in earlier chapters, many of the Larch BISLs do not have

any program analysis tools associated with them. Two notable exceptions are Penelope, an

interactive development and verification system for Larch/Ada [35], and LcLint [24] which

performs extended static-checking of C programs. Another system which makes use of

Larch BISL specifications is the Speckle compiler [82].

Our work shows how Larch BISL annotations can be used in a lightweight fashion which

allow the user to obtain verification conditions without the need for a completely formal

development. Although our prototype has not been developed to the stage where it could

be used on large programs, we believe that future versions could be incorporated into the

Aldor compiler and be at least as fast as the optimisation phase of the compiler. This is

important because tools analysis tools must not be too slow otherwise they will not be used

by developers.

Chapter 6

Case studies in Larch/Aldor

In this chapter we describe two case studies which centre on the use of Larch/Aldor. The

first of these is based around implementations of the quicksort algorithm—starting with

the background theory presented in the Larch Shared Language (LSL) an implementation

is produced using the reification techniques which were described in Chapter 3. From this

implementation, lightweight verification conditions are derived by hand using the same

techniques that are utilised by the prototype VC generator described in Section 5.3.2. The

second case study examines a trimmed-down version of an Aldor library function to scan

“numbers” from text strings. We show that one of the verifications cannot be discharged

because it represents a bug in the implementation which had not previously been detected.

Unfortunately the prototype verification condition generator that we described in Sec-

tion 5.3.2 has not been developed to the stage where it can analyse specific functions. At

the moment it works at the top-level of a program and does not descend into function bod-

ies. Furthermore we have not written interface specifications for operators for important

types such as arrays and lists so any verification conditions the prototype could generate

would be somewhat limited.

6.1 Quicksort

We begin this case study by defining LSL traits to provide the necessary background theory

of sorting arbitrary containers. From this we derive a Larch/Aldor implementation of the

120

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 121

quicksort algorithm for lists using reification (c.f. Chapter 3) and examine the verification

conditions which can be derived from them using the lightweight verification techniques of

Chapter 5. Note that we are not interested here in proving correctness of our Aldor imple-

mentation of the quicksort algorithm—instead we wish to discover out how useful verifi-

cations conditions generated from Larch/Aldor specifications can be for detecting mistakes

in Aldor programs.

6.1.1 Background theory

We start by defining an LSL trait for the theory of sorting generic containers. The container

must be able to maintain its contents in a particular order which means that sets and bags

are not suitable but lists and arrays are. Due to restrictions of the size of the page we have

split the trait into three parts—the top-level part is:

Sorting(E, C): trait

includes

SortingOps(E, C),

StrictPartialOrder(≺, E)

asserts

∀ c,c1,c2:C, e,e1,e2:E

(c1 = genSort(c2)) == (ordered(c1) ∧ permuted(c1,c2));

permuted(empty, c) == (c = empty);

permuted(append(e, c1), c2) ==

((len(append(e, c1)) = len(c2))

∧ permuted(c1,remove(e,c2)));

ordered(empty);

ordered(append(e, empty));

ordered(c) == ¬(head(tail(c)) ≺ head(c)) ∧ ordered(tail(c));

remove(e, empty) == empty;

remove(e1, append(e2,c)) ==

if (e1 = e2) then c else append(e2,remove(e1, c));

implies

SortingImplications(E, C)

The operations which are used by this theory are:

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 122

SortingOps(E, C): trait

includes

Queue(E, C)

introduces

genSort: C → C % General sorting operation

permuted: C, C → Bool % Container is a permutation of another?

ordered: C → Bool % Container is ordered (sorted)

remove: E, C → C % Remove specified element if present

__ ≺ __: E, E → Bool % Ordering relation

Some implications of this theory are:

SortingImplications(E, C): trait

includes

SortingOps(E, C)

implies

Idempotent(genSort, C)

∀ c,c1,c2:C, e:E

permuted(c,c);

permuted(c1, c2) == permuted(c2, c1);

(e ∈ c) == (len(c) = succ(len(remove(e,c))));

¬(e ∈ c) == (len(c) = len(remove(e,c)));

genSort(empty) == empty;

genSort(append(e,empty)) == append(e, empty);

converts

genSort, ordered, permuted, remove

Using this we define a theory for the quicksort algorithm where the quicksort algorithm

works as follows: to sort a non-empty containerC a single element,pivot is removed from

the container. The resulting container (which may contain other elements equal topivot)

is partitioned into containerslo and hi, such that all the elements,(e ∈ lo) satisfy the

ordering(e ≺ pivot) and all the remaining elements(e ∈ hi) satisfy¬(e ≺ pivot). The

quicksort algorithm is applied tolo andhi independently and the resulting sorted containers

are combined withpivot to produce the sorted result.

A correctness proof of this algorithm would need to show that the result of a quicksort oper-

ation is an ordered permutation of the original container and that the algorithm terminates.

Informally we note that the partitioning operation does not remove any of the elements

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 123

(except the single pivot) nor does it modify them; likewise the combination of the sorted

containers does not insert additional elements or mutate them. This ensures that the sorted

container is a permutation of the original one. Provided that the combination of the sorted

containers preserves the ordering, the result will be sorted. An induction proof will show

that the quicksort algorithm is correct—the termination condition requires the size of the

partitioned containers to be smaller than the original which is ensured by the removal of

the pivot element before partitioning.

Quicksort(E, C): trait

includes StrictTotalOrder(≺, E), Sorting(E, C, qSort for genSort)

introduces

pivot: C → E

filter: E, C → C

loPart: C → C

hiPart: C → C

qSort: C → C

concat: C, C → C

{ __ }: E → C

__ \ __ : C, C → C

asserts

∀ c,c1,c2:C, e,e1,e2:E

¬(c = empty) ⇒ (pivot(c) ∈ c);

filter(e, empty) == empty;

filter(e1, append(e2,c)) == if (e1 ≺ e2)

then append(e2, filter(e1,c)) else filter(e1,c);

{ e } == append(e, empty);

concat(c, empty) == c;

concat(c, append(e,c2)) == append(e,concat(c,c2));

qSort(empty) == empty;

qSort(append(e,empty)) == append(e, empty);

qSort(c) == concat(qSort(loPart(c)),

concat({pivot(c)}, qSort(hiPart(c))));

loPart(c) == filter(pivot(c),c);

hiPart(c) == remove(pivot(c),c \ loPart(c));

implies ∀ c,c1,c2:C, e,e1,e2:E

¬(pivot(c) ∈ loPart(c));

concat(empty, c) == c;

converts concat, \, filter, qSort, loPart, hiPart

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 124

Note that we have strengthened the constraint on the ordering operator≺ so that provides

a strict total order. This allows the results results of two different sorting operations to

be compared even if these operations are both unstable. Unstable sorting algorithms are

able to correctly sort a container and but may produce a different ordering from another

equally valid implementation. Indeed the same unstable algorithm may produce a different

ordering depending on the input data used.

++} uses Quicksort(S, List(S), orderOp for ≺);
++} requires StrictTotalOrder(orderOp, S);
++} modifies nothing ;
++} ensures result = qSort(L);
++} where orderOp(a : S, b : S) : Boolean == {
++} modifies nothing ;
++} }
quickSort(S:BasicType, orderOp:(S,S)->Boolean, L:List S):List S ==
{

-- Empty and singleton lists are already sorted.
(#L < 2) => L; -- First exit point.

-- Select a pivot - the first element will suffice.
pivot := L.1;

-- Split into three parts
++} ensures lo = loPart(L);
lo := [e for e in rest(L) | orderOp(e, pivot)];

++} ensures mid ={ pivot(L)}
mid := [pivot];

++} ensures hi = hiPart(L);
hi := [e for e in rest(L) | ∼orderOp(e, pivot)];

-- Sort the upper and lower partitions
upper := quickSort(S, orderOp, hi);
lower := quickSort(S, orderOp, lo);

-- Combine the pivot and upper partition
tmp := concat(mid, upper);

-- ... then combine the lower parition and return
concat(lower, tmp);

}

Figure 6.1: Quicksort Implementation For Lists

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 125

6.1.2 Quicksort for lists

In this section we examine a Larch/Aldor implementation of a quicksort algorithm for

sorting lists (Figure 6.1) with the aim of extracting verification conditions from it using

the lightweight techniques described in Chapter 5. The program was obtained from the

Quicksort LSL trait by using reification techniques similar to those described in Chap-

ter 3 and so we expect that any mistakes in the algorithm would stem from mistakes in the

LSL specifications used as the starting point. The reification process concentrated on the

three definitions ofqSort which could be translated almost directly into Aldor.

In the sections which follow we examine the verification conditions that have been gener-

ated. We find that in this case study the annotations and the background LSL theory provide

enough information to allow the verification conditions to be discharged with relative ease.

This means that a user would not be inundated with verification conditions that they might

not wish to investigate further.

The modifies clause

Before examining the body of the function we consider first the satisfaction of themodi-

fies clause—in general this may be very difficult or even impossible but luckily for this

implementation it is relatively easy. The program shown below uses a number of different

operators, most of which are known to be purely functional (they modify nothing that is

visible to their clients). The only operations which we need to focus on areorderOp and

of course,quickSort itself. Even these can be shown to modify nothing visible to the

client simply by appealing to the pre-condition andmodifies clauses ofquickSort .

The remaining statements in the function can not modify the listL nor any of the other

parameters and the function does not refer to any free variables which would be visible to

the caller. Hence it does not modify anything that is visible to the caller.

6.1.3 Verification conditions

We proceed to examine line-by-line the implementation shown in Section 6.1.2 in just the

same way as the lightweight verification condition generator of Section 5.3.2 would do. At

each stage of the analysis the context which describes the current state of the program may

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 126

be extended and this is highlighted in the sections below by showing the formulæ which

are added. During the verification condition generation, Aldor identifiers are translated into

subscripted LSL symbols—this enables us to reason about the program in a time indepen-

dent way. It also allows us to refer to the (symbolic) value that an identifier has before and

after each program statement has been executed. If an identifier changes value then the

subscript is incremented otherwise it is left unchanged.

The semantics of Larch/Aldor are such that it only makes sense to analyse functions under

the assumption that their pre-conditions are satisfied otherwise the behaviour of the func-

tion is unconstrained and any information derived from it may be useless. This means that

the context is always initialised with the pre-condition of the block under analysis which in

this case is the body of thequickSort function:

StrictTotalOrder(orderOp0, S0)

In practice the referenceStrictTotalOrder would be replaced by the contents of the

trait definition with appropriate renaming. However, there is no need to do so here since it

would be unnecessarily verbose and would provide little enlightenment.

The first exit point

The first exit point of thequickSort function is the statement “(#L < 2) => L ”.

From this and the post-condition ofquickSort we obtain the verification condition

(length(L0) < 2)⇒ (L0 = qSort(L0))

which can easily be discharged using the axioms of the LSLQueue trait. After processing

this statement the context is extended with the assertion

¬(len(L0) < 2)

Extracting the pivot element

The pivot is extracted using the statement “pivot := L.1 ” which is syntactic sugar

for “pivot := apply(L, 1) ”. The specification of the array operationapply (not

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 127

shown) requires that the index 1 lies within the bounds of the array and hence we obtain

the VC:

(1 ≥ 1) ∧ (1 ≤ length(L))

This can be easily discharged using knowledge that¬(len(L0) < 2) which followed from

the previous verification condition and a little knowledge (i.e. background theory) about

orderings over the integers.

Partitioning the list

The assignments tolo , mid and hi are annotated with post-conditions and so we do

not examine them any further (the lightweight approach). Their pre-conditions are trivial

(simply true) and the context is extended with the following assertions:

lo0 = loPart(L0)

mid0 = {pivot(L0)}

hi0 = hiPart(L0)

Sorting the partitions

After partitioning there are two applications ofquickSort which assign results to the

variablesupper and lower . The assignment statements do not require any verification

conditions to be generated but the function applications do:

StrictTotalOrder(orderOp0, S0)

This can be trivially discharged for both applications since this assertion was the first to be

placed in the context. Now using the post-conditions ofquickSort the context can be

extended with two more assertions:

result0 = qSort(hi0) ∧ upper 0 = result0

result1 = qSort(lo0) ∧ lower 0 = result1

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 128

The LSLresult i symbols are specification variables introduced to simplify the generation

of verification conditions. Here they are represent the right-hand side of the assignment

statements.

Combining the pivot and upper partition

The first recombination is “tmp := concat(mid, upper) ” and since the specifica-

tion of concat (not shown) has no pre-condition there are no verification conditions to be

generated. The post-condition ofconcat allows the context to be extended with:

(result2 = concat(mid0, upper 0)) ∧ (tmp0 = result2)

Final combination and exit

Finally we reach the last statement of the function. The application ofconcat does not

generate any verification conditions itself but the context is extended with

result3 = concat(lower 0, tmp0)

However, since this is an exit point of the function we generate the verification condition

that the post-condition ofquickSort is satisfied, namely that:

result3 = qSort(L0)

This can be discharged relatively easily since our implementation closely follows the defi-

nition of qSortfrom our LSL theory. After a little rewriting the verification becomes

concat(qSort(loPart(L0)), concat({pivot(L0)} , qSort(hiPart(L0))))

which is one of the axioms of theQuickSorting trait.

6.1.4 Summary

Even from this relatively simple program it has been possible to generate quite a few verifi-

cation conditions. Of these almost all were very easy to discharge by hand but a few would

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 129

require a little effort with a proof assistant such as the Larch Prover (LP). For example, the

verification condition generated from the first exit point of the program was

(length(L0) < 2)⇒ (L0 = qSort(L0))

Attempting to prove that this holds using LP is complicated by the fact that the obvious

LSL formula which could be used to discharge it is expressed in terms of list constructors

rather than in terms of the length of the list:

qSort(append(e, empty)) ≡ append(e, empty))

However, this verification condition could be easily “discharged” by inspection if we recog-

nise that(length(append(e, empty)) = 1) ∧ (1 < 2).

If this case study was extended to investigate a quicksort algorithm for sorting arraysin

situ then many more verification conditions might be generated since the implementation

is more complicated. The number of these which can be automatically discharged by a

proof assistant such as the Larch Prover will depend on how powerful the background LSL

theories are and how detailed the Larch/Aldor interface specifications are.

One might begin by applying a lightweight verification condition generator to an unadorned

program and then examining the output. Any verification conditions which are difficult to

discharge may either highlight bugs in the implementation or deficiencies in the annotations

of any functions which were applied. Various points in the program could then be annotated

with Larch/Aldor and a new set of verification conditions generated. The process could be

repeated until the program has been specified to the desired level and in the process any

bugs may be identified and eliminated.

6.2 Number scanning

The second case study is concerned with the task of converting a textual representation of

a “number” into a value belonging to a particular type. At its simplest this can be regarded

as the conversion of text into a value of typeFloat for example. However, the Aldor

NumberScanPackage in the AxlLib library allows values of any typeR to be retrieved

from a text string whereR satisfies the categoryRing . The textual representation may

contain both integer and fractional parts and may have an exponent part; it may also be

written using any base or radix. Several examples are given below:

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 130

Text Floating point value

“42” 42

“3.14159” 3.14159

“4.5e-2” 0.045

“8r15” 13 (Octal 15)

“2r111.101” 7.625 (Binary 111.101)

6.2.1 Introduction

The only export ofNumberScanPackage is scanNumber which performs the extrac-

tion of a “number” from a text string. In Figure 6.2 we show a slightly simplified version

of the Aldor libraryscanNumber function which scans numbers in base 10 without ex-

ponents. Extending the function to deal with these features is relatively easy but would not

add much to this exposition. We have annotated interesting points in the code but have not

shown functions such asscPeekChar (we are not concerned with their implementation

here). In fact these functions are defined as macros in the Aldor library but their behaviour

is just the same when treated as functions. As before with the quicksort example we have

presented the function as-is rather than as part of a domain to simplify the presentation.

The number-scanning algorithm is simple—a variable calledbufpos is used to keep track

of the current character within the buffer being scanned. Initially it is placed at the first

character and then moved forward passed any leading whitespace characters. If there ap-

pears to be a sign symbol (+ or−) this is noted andbufpos is advanced. Next the integer

part of the number is scanned which must always exist even if the number is a floating point

value in the range[−1, 1]. A check is made to see if there is a decimal point and then any

fractional part is scanned. Finally the function combines the integer and fractional parts

into a numerical value which is returned to the caller.

6.2.2 Verification conditions

Although our annotations ofscanNumber and its support functions are fairly detailed

they do not completely capture the behaviour of the algorithm. In particular we have not

attempted to describe how the buffer is scanned except to state in various places that the

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 131

scanNumber(R:Ring, buf:String):R ==
{

free bufpos:Integer := 1;
(fraction, fracExpr) := (0, 0);

++} requires true
++} ensures (buf[bufpos′] 6= SPACE) ∧ (bufpos′ ≥ bufpos∧)
++} modifies bufpos

while (isSpace(scPeekChar()) repeat scAdvance();

++} requires (buf[bufpos] 6= SPACE) ∧ (bufpos < length(buf))
++} ensures (sign′ = signOf (result) ∧ (bufpos′ ≥ bufpos∧)
++} modifies bufpos, sign

sign := scanSign(buf);

++} requires isDigit(buf[bufpos])
++} ensures (mantissa = mantissaOf (result))
++} ∧(bufpos′ > bufpos∧)
++} modifies bufpos, sign

mantissa := scanInteger(buf);

++} requires (buf[bufpos] = DOT) ∨ (bufpos = length(buf))
++} ensures (fraction = fractionOf (result))
++} ∧(fracExp = exponentOf (result))
++} ∧(bufpos′ = length(buf))
++} modifies bufpos, sign

if (isDecimalPoint(scPeekChar())) then
{

scAdvance();
oldpos := bufpos;
fraction := scanInteger(buf);
fracExpr := bufpos - oldpos;

}

return mantissa + (fraction*power(10, -fracExp));
}

Figure 6.2: Implementation ofscanNumber

algorithm never moves backwards through the buffer. We do not regard under-specification

as a problem and one may wish to treat it as part of the development process: generate

verification conditions, check them and perhaps strengthen or modify the annotations. This

process can be repeated as many times as it is necessary. We have decided not to de-

fine an LSL theory which would provide the semantics of predicates which appear in the

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 132

Larch/Aldor annotations. Such a theory is not essential for this case study although the

types of the predicates would be required if the Larch Prover was used for proof attempts

on the verification conditions.

In the beginning. . .

We begin with the first line ofscanNumber and proceed in exactly the same way as

before. Initially the context is empty because thescanNumber function has a trivial

pre-condition but after the execution of the first two statements the context is

bufpos0 = 1

fraction0 = 0

fracExpr0 = 0

Skipping leading whitespace

We now consider the while loop which is designed to skip past any leading whitespace

characters. The pre-condition generates the trivial verification conditiontruewhich can be

ignored but themodifies clause indicates thatbufpos mightbe changed. This means

that we need to introduce a new LSL symbol for it,bufpos1 which corresponds to the

post-state ofbufpos. The post-condition allows us to extend the context with

buf0[bufpos1] 6= SPACE

bufpos1 ≥ bufpos0

Note that we do not know what the concrete value ofbufpos1 is but we do have a relation-

ship between it and its original valuebufpos0. Also note that we refer to the parameterbuf

asbuf0: since it is never modified it will always be referred to as this.

Reading the sign, mantissa and fraction

Moving past the while loop we reach the statement which scans the sign of the number

if it is present. This has a more complicated pre-condition which needs a little tidying up

before it can be renamed into an LSL symbol. As described in Section 5.3.3, unadorned

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 133

occurrences of an identifier such asbufpos which appear the pre-condition are a shorthand

for the identifier in its pre-state. Since the pre-state for this identifier isbufpos1 the VC (in

the context of the preceding sections), becomes:

(buf0[bufpos1] 6= SPACE) ∧ (bufpos1 < length(buf0))

which simplifies tobufpos1 < length(buf0). This verification condition highlights a

problem with the implementation which assumes thatbuf is not the empty string and does

not contain just whitespace. Using this information we may wish to add an appropriate test

to ensure that these two conditions are dealt with correctly.

The post-condition extends the context with

sign1 = signOf (result)

bufpos2 ≥ bufpos1

whereresult is the LSL symbol representing the result of the function that we are analysing:

numberScan . ThesignOf predicate would be defined in an LSL theory just as was done

in the quicksort case study.

The analysis of the statements which read the mantissa and the fractional part of the number

is similar to that for reading the sign. We generate the verification conditions

isDigit(buf0[bufpos2])

(buf0[bufpos3] = DOT) ∨ (bufpos3 = length(buf0))

and extend the context with

mantissa1 = mantissaOf (result)

bufpos3 ≥ bufpos2

fraction1 = fractionOf (result)

fracExp1 = exponentOf (result)

bufpos4 = length(buf0))

The final statement

The last line of the program is what the algorithm has been building up to—this is the point

where the partial results are combined to produce a value in the domainR. However, there

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 134

is a problem: although thepower export from the categoryRing does not have a pre-

condition, implementations of it in specific domains might do. For example, domains such

asInteger require the exponent to be positive. Hence the VC when(R = Integer) is:

−fracExp1 ≥ 0

If we analyse the function without the annotation on theif statement which scans the

fractional part of the number then we find that if there is no fractional part then

fracExp1 = fracExp0

otherwise if there is a fractional part then

fracExp1 ≥ 0

This means that if the number being scanned has a fractional part, and(R = Integer),

then the verification condition cannot be satisfied.

Clearly this is a bug in the implementation and indeed a small test program demonstrates

it: when(R = Integer) the program stops with a runtime error becausepower from In-

teger detects the negative exponent. However, when(R = SingleInteger) (machine-

precision integers)power quietly returns the wrong value which causesscanNumber to

return the wrong value.

6.2.3 Summary

In this case study we found a few simple verification conditions, none of which could be

discharged automatically. The annotations could be strengthened to describe the format that

the text string must take and how the algorithm would scan it which may help. However,

we discovered from the first verification condition that the function was not checking to see

if it had reached the end of the buffer. We also discovered a more serious bug in the final

statement of the program which prevents integers from being scanned correctly when the

text string represents a number with a fractional part after the decimal point.

This latter discovery highlights a problem with the generation of verification conditions

from polymorphic functions. ThescanNumber function is parameterised by the domain

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 135

R whereR satisfies the categoryRing and we have found that different verification con-

ditions can be generated depending on the concrete value ofR. This is a problem with the

implementation which is relying on properties ofRwhich are not described by its category.

From the lightweight verification condition generation stand-point it means that some ver-

ification conditions can only be generated when the function has been specialised with a

particularR. This is an issue which can not be easily avoided unless the body of each poly-

morphic function is analysed every time it is applied. This goes against the basic principles

of lightweight verification condition generation and eliminates all the benefits of modular-

ity that we rely on for creating easily comprehensible output. We return to this point in

Section 6.3.

6.3 Conclusions

In this chapter we looked at two different programs. The first was a function which sorted

lists of values using a user-supplied ordering and the quicksort algorithm while the sec-

ond was a function for scanning numbers from text strings taking into account a possible

fractional part.

For the quicksort we began by defining an LSL theory of sorting contains which can retain

their elements in a specified order. This was extended to describe the quicksort algorithm

and then, using the reification techniques of Chapter 3, a simple implementation was pro-

duced and annotated using Larch/Aldor. The implementation was analysed from top to

bottom to generate verification conditions using the lightweight techniques described in

Chapter 5. Most of these verification conditions were easy to discharge automatically al-

though one or two would require a little effort using the Larch Prover, LP.

The number scanning example was presentedas iswith no background theories described

in LSL or otherwise. The implementation was a cut-down version of a function which is

part of the Aldor AxlLib library. To simplify the presentation support for arbitrary bases

and exponents were removed and the behaviour of the the main components were anno-

tated with Larch/Aldor specifications. As with the quicksort case study, the function was

analysed from the start to the end. This time fewer verification conditions were generated

and none could be automatically discharged. This was mainly due to the complexity of

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 136

describing the format that the text string being scanned ought to have and the behaviour

of the character-by-character scanning. However, we discovered two mistakes in the im-

plementation: the first was that there were no safety checks to ensure that the scan did not

reach the end of the text string prematurely. The second was more serious and depended on

the specification of thepower export—this export is defined in the domainR which was

passed as an argument to the scanner.

This raised an interesting question about how polymorphic functions such asscanNum-

ber ought to be analysed. Using the lightweight techniques that we described in Chapter 5

we would be unable to generate a verification condition which would highlight the bug.

It was only after considering whether the verification conditions forscanNumber spe-

cialised to a particular domain such asR = Integer that we realised there might be a

problem. As it stands, the implementation is incorrect since it depends on a “specification”

of power which is not the same for all domains belonging to the categoryRing .

It is this kind of subtle mistake that a verification condition generator ought to be able to

detect. Unfortunately it is not clear to the author what the best way to achieve this is. One

method would be to analyse the body of a polymorphic function each time it is applied

in a context where the values of the abstract type parameters are known. This option is

not very good since it destroys the modularity that we have been utilising to achieve the

“lightweight” technique. An alternative might be to store “pending” verification conditions

along with the compiled version of a function. For the number scanning example the pend-

ing verification conditions would include the fact that the pre-condition ofpower exports

must be satisfied under the context which was constructed during the original analysis.

Now whenever the analyser encounters the application of a library function it attempts to

discharge the pending verification conditions.

During both case studies we also discovered the potential for incremental development

of interface specifications. Initially the unadorned version of the program could be anal-

ysed and important verification conditions examined. Then parts of the program could be

annotated, perhaps directly as a result of looking at the verification conditions generated

previously. This process could be repeated for as long as necessary perhaps producing a

completely annotated program. The disadvantage of a program in which every statement

is annotated is that changes to the implementation will not be detected by the lightweight

analysis which will only look at the annotations.

CHAPTER 6. CASE STUDIES INLARCH/ALDOR 137

We believe that there is a case for allowing the lightweight analysis to descend a little

deeper than it does at present. For example inscanNumber it might be useful to check

that the while loop really does ensure that the current character in the scan is not a space.

Quite how to achieve this without losing the benefits of our lightweight analysis is not clear.

One possibility is to consider the verification conditions as labeling a tree structure. At the

root or the first level of the tree would be all the verification conditions associated with

the normal lightweight analysis of the program. Below this are the results of applying to

lightweight technique recursively to each statement with the intention of showing that they

satisfy their interface specification.

The analysis would still not descend through function applications and would just apply to

the body of a specific function. The depth of the tree and the number of nodes which are

computed ought to be performed lazily especially since the user may only be interested in

the very top level. This would require a good user-interface to make it possible, perhaps

a graphical user-interface may be essential. One could envisage the user’s program repre-

sented where the bodies of annotated statements can be folded away and hidden from view.

The user would be able to unfold specific statements as far as as they wish and the analyser

would generate verification conditions for all unfolded nodes.

Chapter 7

Conclusions

The motivation for our work originated from the desire to provide support for the construc-

tion of reliable computer algebra programs and to allow existing implementations to be

checked to ensure that their component functions are only applied in a correct manner. To

this end we have examined the use of VDM reification techniques [50] to provide a safe

translation from specifications to implementations, we have designed a Larch annotation

language for Aldor, the compiled extension language of theaxi.om computer algebra sys-

tem (Chapter 4) and we have developed a methodology of lightweight program verification

(Chapter 5). We have also constructed a prototype tool for the automatic generation of ver-

ification conditions from Larch/Aldor programs and demonstrated how such verification

conditions might be utilised (Chapter 6).

7.1 Software development for CAS

We believe that the components of modern computer algebra systems such as Maple [13],

axi.om [48] and Mathematica [86] generally perform their tasks correctly. The mathe-

matics upon which they are based may have been studied for many years, sometimes

even before computers and CAS were invented. These components may be exposed to

the user/developer as library functions which can be used to extend the original system.

However, although the components themselves may be correct, programs constructed from

them may not be. For example, assumptions about the behaviour of the components might

138

CHAPTER 7. CONCLUSIONS 139

be invalid or side-conditions might not be satisfied. In Section 6.2.2 we highlight a bug

which appears to arise from an invalid assumption about the behaviour of the exponentia-

tion operator—the assumption is not valid in every domain that the implementation claims

to accept.

7.1.1 Reification

We encourage the use of reification (see Chapter 3) to assist with the construction of new

implementations and modification of existing ones. This technique allows specifications

to be transformed into other specifications and, eventually, implementations. Each trans-

formation need to be justified, ideally by providing a retrieval function or relation which

allows the original specification to be obtained from the new one. The transformations are

generally performed with the aim of obtaining a specification that is close to the chosen

implementation language. Thus one may begin with a very abstract specification written

in terms of generic contains and end up with a specification in terms of linked lists. The

operations defined by the specification may also be transformed, again with the intention

of obtaining something that can easily be implemented. In Chapter 3 we also show how

this technique can be used to produce successively more efficient (faster) implementations.

However, without effective tool support this technique may not scale very well; even with

support (e.g. the RAISE system [16, pages 101–102]) the burden of justifying each trans-

formation step may be too great for large programs [16, page 102]. Despite the scalability

problems we still believe that it has a place in software development—even if an entire sys-

tem is not developed in this way, individual components could benefit considerably. In fact

each transformation step need not be justified with complete rigour—an informal argument

may help to identify potential problems or issues with less effort. A successful system

based on similar ideas has been developed by the High Assurance Team at ICL [53]. Their

ProofPower tool allows functional requirements written in Z notation [72] to be checked

and refined before being prototyped in Compliance Notation. The prototype implemen-

tations can be subsequently refined into Ada programs, possibly generating verification

conditions along the way. Like us, they adopt a pragmatic approach and allow verification

conditions to be discharged by formal or informal arguments as required.

CHAPTER 7. CONCLUSIONS 140

7.1.2 Proving properties of specifications

Once specifications have been written then attempting to prove properties about them

can be valuable. Not only does it provide a way to detect inconsistencies and under-

specification but issues which may affect the design significantly could be identified. It

has been pointed out by Brooks [8] and others that the sooner problems are identified the

easier it is to deal with them—in a commercial environment this is particularly important.

One may also learn more about the particular problem domain and potential optimisations

may become apparent. Even the analysis of a simply binary search procedure can iden-

tify redundant cases in a naı̈ve implementation—if the program spends a lot of time in the

search procedure then such observations may be very important.

7.1.3 Annotating source code

One of the main contributions of this thesis is the design of a Larch annotation language

for the Aldor computer algebra programming language and central to the Larch philosophy

is the use of these annotation languages for the clear, concise and unambiguous descrip-

tion of the behaviour of functions and procedures. As part of our lightweight approach to

formal methods and program verification we allow users to reason about certain aspects

of their programs before they have been completely implemented. If a top-down develop-

ment strategy is adopted then low-level procedures may be defined as stubs and annotated

with their intended behaviour. By investigating verification conditions generated from such

programs the developer may decide to modify the specifications of the low-level functions.

This process can be iterated until a suitable implementation can be produced and the im-

plementation itself can be checked against its specification.

These lightweight techniques can also be applied to legacy code in a similar way to that

discussed by Evans in [24].

7.1.4 Verification conditions

As we point out in Section 5.2.5, it may not be feasible to prove whether a given verification

condition is true or false. Thus we adopt a pragmatic approach and allow the user/developer

CHAPTER 7. CONCLUSIONS 141

to decide on the best way to use them. They may decide to employ a mechanical tool

such as an automated theorem prover, their specialist knowledge may be used to convince

themselves of the validity or otherwise of verification conditions, or they may simply wish

to trust them. Verification conditions might also be fed back into the specifications as extra

constraints that must be satisfied by the implementation.

7.2 Contributions of this research

Our research provides two main contributions—the first is a new Larch annotation language

for the Aldor programming language and the second is the methodology of lightweight pro-

gram verification. In Chapter 4 we defined the syntax of Larch/Aldor and wrote a model

of its store using the Larch algebraic specification language called LSL. Our annotation

language goes a step further than many of the Larch languages by allowing arbitrary state-

ments in the programming language to be annotated, for example allowing the specification

of loop invariants. We have also considered the issue of functions-as-parameters and, in the

case studies of Chapter 6, the issue of polymorphic functions.

Chapter 5 describes our technique of lightweight program verification. Verification con-

ditions may be generated from programs written using Larch/Aldor either by hand or au-

tomatically. We have produced a prototype lightweight verification condition generator

written in Aldor which has been shown to work successfully on small programs. Due to

lack of time we have been unable to develop the necessary background theory to allow

types more complicated than the integers to be reasoned with. It is this constraint that

restricts the size of program which can be analysed rather than anything else.

In Section 5.2.3 we describe how our technique differs from “traditional” Hoare [42] style

of program verification and in Section 5.2.5 we suggest various ways in which verification

conditions can be used.

Particular limitations include the analysis of polymorphic functions and providing user-

control over which parts of a program are examined by our tool. In general, verification

conditions for polymorphic functions can only be investigated when type parameters are

substituted for concrete values. We are not sure of the best solution for this problem—

perhaps pending verification conditions need to be associated with functions in addition to

CHAPTER 7. CONCLUSIONS 142

any annotations. The problem of the user more control over which parts of their program

is analysed by the lightweight verification condition generator is also difficult. This is an

HCI (human-computer interaction) problem and we envisage that a graphical user interface

may play an essential part in its solution.

7.3 Future work

One of the main drawbacks of the Larch approach at the time of writing is that it is based

on first-order logic. Although this is sufficient for many programs, those involving higher-

order constructs and polymorphism may present problems which would be better dealt

with using a higher-order logic. Furthermore the tool support for reasoning about Larch

specifications is limited to a proof-assistant which does not appear to be developing any

further. If we were to start afresh then a system such as PVS [68] or HOL [34] might prove

to be beneficial. These systems are popular, stable and are being actively developed.

Restrictions imposed by time taken to recompile the Aldor compiler following our modifi-

cations (using the fastest machine available to us), played a significant part in the choice of

architecture for the lightweight verification condition generator (see Section 5.3.2. Instead

of embedding the tool inside the compiler where facilities such as type inference and library

access were easily available, we were forced to make minor changes to the compiler to sup-

port an external analyser. The compiler already provided a way to translate its internal data

structures into a LISP-like object and this was augmented with type and specification an-

notations to assist the external tool. Three years further on, machine speeds have increased

considerably and it is now possible to make adjustments to the compiler interactively—

compilation times can be measured in seconds and minutes instead of hours. Thus it would

be feasible to incorporate the technology of verification condition into the compiler and to

benefit from all the features that the compiler provides. The result would be faster analysis

of program annotations and the annotations (and possibly verifications conditions as well)

could be easily stored in Aldor libraries along with the implementations.

With regards to the verification condition generator itself, more work needs to be done

to strengthen the link between our store model of Chapter 4.3 and its use in our imple-

mentation. This will increase the expressiveness of verification conditions which will be

able to refer to arbitrary program states instead of just the current state. In addition, the

CHAPTER 7. CONCLUSIONS 143

model itself could be extended to provide better support for various features of the Aldor

language and the specification of basic Aldor domains needs to be undertaken. This will

enable developers to make use of the large body of specifications ofaxi.om domains that

has been developed by Kelsey [52]. As mentioned in Section 6.3, the verification condi-

tion generator needs to be extended to deal with issues such as polymorphic functions and

pending verification conditions, and to allow the user better control over which parts of

their programs are analysed.

Appendix A

Introducing Aldor

In this section we provide a more thorough introduction to Aldor, the programming lan-

guage which we are designing our Larch BISL for. We describe the language in more

detail than we did in the introductory chapter but we refer readers to [83] for a more thor-

ough description. We begin in Section A.1 by describing Aldor categories and follow this

with a description of domains in Section A.2, a look at functions in Section A.3 and a brief

study of some other interesting features in Section A.4.

A.1 Categories

An Aldor category is a collection of declarations parameterised by zero or more values

(usually domains). They are closely related to Haskell type classes [44] and Java interfaces.

Categories specify information about domains and allow functions to place restrictions

on the types of domain which they can use. They usually contain function declarations

which may be conditional; default values may be defined where appropriate. Although

categories may be used as values they are often associated with constants whose names are

intended to convey the meaning of the category. Thus a domain which claims to satisfy

theAbelianMonoid category is expected to support additive arithmetic while a domain

satisfyingFinite is expected to only have a finite number of values. The semantics

conveyed by these names cannot be inforced by a compiler and this is a major motivation

for the design of Larch/Aldor and creation of associated static-checking tools.

144

CHAPTER A. I NTRODUCING ALDOR 145

Multiple inheritence of categories is supported and is used to derive new categories from

simpler ones. It also enables a hierarchy to be constructed—for example, theRing cate-

gory hierarchy from one of the Aldor libraries can be represented pictorially:

Below is an example of an Aldor category. The%symbol represents the domain (or type)

which will implement the category; thewith clause defines the category value:

SetCategory(T:BasicType) : Category == with {
-- Inherit equality tests, output operators etc.
FiniteLinearAggregate(T); -- Inheritence

-- Standard set operations.
empty : () -> %; -- Create an empty set
union : (%, %) -> %;
intersection : (%, %) -> %;
difference : (%, %) -> %;

-- Useful test operations.
member? : (T, %) -> Boolean;
subset? : (%, %) -> Boolean;
superset? : (%, %) -> Boolean;

if (T has Order) then {
smallest : % -> T;
largest : % -> T;

}

default { -- Default implementations
subset?(s1:%, s2:%) : Boolean ==

(intersection(s1,s2) = s2) /\ (s1 ˜= s2);
superset?(s1:%, s2:%) : Boolean ==

(intersection(s1,s2) = s1) /\ (s1 ˜= s2);
}

}

CHAPTER A. I NTRODUCING ALDOR 146

Firstly note that this category is parameterised by the domainT which has typeBasic-

Type . This means that the category value can only be created if the supplied domainT

provides all the operations defined by the categoryBasicType . This in turn means that

when writingSetCategory we can rely on the fact that all the operations ofBasic-

Type are available to us (such as equality tests and a basic output operator). In the body of

the category the exports ofFiniteLinearAggregate(T) are inherited which means

that we do not have to define them ourselves. Next we see four set constructors followed by

three tests. If the domainT has an ordering defined on its elements then it ought to satisfy

the categoryOrder . Thus wheneverT satisfiesOrder our category knows that the oper-

ationssmallest() andlargest() are meaningful and it marks their declarations as

being conditional on “T has Order ”. Finally the default implementation of thesub-

set() andsuperset() operators can be defined in terms of theintersection()

and equality test operators. Any domain which satisfies this category may choose to define

different implmentations for these operators.

A.2 Domains

An Aldor domain is an environment which provides a collection of exported constants and

definitions for any declarations in the categories it claims to satisfy. Like categories, do-

mains may be parameterised by arbitrary values including other domains; unlike categories

only single inheritence of domains is permitted provided that the representations of the par-

ent and child are compatible. An unusual feature of Aldor is that domains may be extended

post factoto provide additional exports. This enables libraries to define a basic interface

which can be enhanced by other libraries later on.

For convenience domains are often divided into two classes—those which define a dis-

tinguished type are referred to asabstract datatypeswhile those which do not are known

aspackages. Packages are useful for grouping together functions and other named values

which may be imported into the current scope as a single unit. Those which export two

or more types can be used to implement multi-sorted algebras as shown in the example

below [83, page 88]. The packageNumberSorts exports the typesNat andRat , along

with three operators to work over values of these types:

CHAPTER A. I NTRODUCING ALDOR 147

NumberSorts == add {
Nat == Integer;
Rat == Ratio(Natural);

rat(a:Nat, b:Nat): Rat == a / b;
num(r:Rat):Nat == numer r;
den(r:Rat):Nat == denom r;

}

Abstract data types are defined in Aldor using the same syntax as packages. The only dif-

ference is that a distinguished type (represented by the symbol%in the domain definition)

is exported along with operations to work over values of that type. Aldor provides two

macros calledper and rep to convert between the internal and external representation

of domain values to hide the low-level type coercion involved. In the example below the

SimpleNat abstract data type has two exports corresponding to the constant zero and the

successor function. This time we have specified the category which this domain satisfies:

SimpleNatCat : Category == with {
0 : %; -- A constant representing zero
succ : % -> %; -- The successor operation

}

SimpleNat : SimpleNatCat == add {
Rep == Integer; -- Integers as the internal rep
import from Rep;

0 : % == per 0; -- Type inference handles overloading
succ(n : %) : % == per ((rep n) + 1);

}

The exports of a domain areconstantswhose values are defined when the domain itself is

defined. Variables which are declared at the top level of a domain are local to a particular

domain instance. Single inheritance between domains is achieved by writing the name of

an existing domain on the left hand side of theadd expression. The representation of the

parent domain must be compatible with that of the inheriting domain—for packages this

is not a problem since they have no representation while abstract data types generally use

their parent as the representation. An example of category and domain inheritance can be

seen together in the example below:

CHAPTER A. I NTRODUCING ALDOR 148

ComplicatedNat : SimpleNatCat with {
pred : % -> %;

} == SimpleNat add {
Rep == SimpleNat;

pred(n : %) : % ==
if (n = 0) then 0 else per ((rep n) - 1);

}

The ComplicatedNat domain provides all the exports ofSimpleNatCat (without

needing to provide definitions for them) as well as a function to compute the predecessor

of a natural number. In practice it would be better to extend theSimpleNat domain

rather than use inheritance (see Section A.4.3). Note that the only operations which are

exported are those which satisfy the category. This mechanism provides domain inheritance

with total control over the interface and allows domains to be extended or restricted as

appropriate.

A.3 Functions

Functions in Aldor are essentially the same as functions and procedures in any other im-

perative language. However, the syntax of the Aldor type system often makes function

definitions simpler and easier to understand than those in C for example. The argument list

and return values of a function are declared as tuples of typeType and since elements of

tuples can be named or assigned default values, so can function parameters. The syntax for

declaring functions has already been shown in Section A.1 as part of category values and

need not be shown here.

As with categories and domains, functions may be parameterised by any value including

other functions and types. Function values (anonymous functions) can be created in a

similar manner to category and domain values but the syntax for this is a little obscure.

Currying and recursive function definitions are also possible. Functions may use dependent

types and this can be used to provide support for parametric polymorphic procedures and

domain manipulating functions as shown below:

CHAPTER A. I NTRODUCING ALDOR 149

-- Sum the elements of a list: the constant 0 and the
-- addition operator + are exported by any domain which
-- satisfies Ring. The third argument defaults to 0 if
-- it is omitted.
sumList(R:Ring, l:List(R), seed:R == 0):R ==
{

-- The # operator obtains the length of the list ‘l’.
if (#l = 0) then

seed;
else -- Recurse for brevity of example.

first(l) + sumList(R, rest(l), seed);
}

-- A fairly convoluted function declaration!
Ladder: (D: with {f: % -> E}, E: with {g: %-> D}) -> Type;

In the example above, the type of the second argument of thesumList function clearly

depends on the value of the first argument,R. The third argument has a default value of0

and may be omitted when the function is applied. The declaration of theLadder function

uses mutually dependent types and was taken from [83, page 82].

A.4 Other features of Aldor

In this section we examine three other features of Aldor which are not often found in other

imperative programming languages. These are generalised iterators which are known as

generators, fluid variables andpost factoextensions.

A.4.1 Generators (coroutines)

When programming in a language which has a wide variety of aggregate data types there

is a problem over the choice of algorithm for iterator over all the elements of an object. For

example, an efficient list traversal algorithm is likely to be less inefficient when applied to

an array andvice versa. In Aldor, the solution to this problem is to use generators from

which values can be obtained serially. A domain which implements an aggregate data type

will export a functiongenerate which returns a generator designed to efficiently iterate

over elements of the aggregate. In fact since generators are values they are not restricted to

being used to iterate over data strucutres. An example of a simple generator value is:

CHAPTER A. I NTRODUCING ALDOR 150

generate { yield 1; yield 7; yield 3; yield 8; }

The first time a value is requested from the generator defined above the value 1 will be

returned, the next time 7, 3 and finally 8. After this point the generator is empty and no

more values can be extracted from it. As one might expect, generators are often used to

provide values forfor loops—while the generator is not empty, assign its next value to

the loop variable and execute the instructions in the body of the loop:

for i in generate(0..10) repeat
foo(i);

In this example the integer segment (0 . . . 10) is converted into a generator which is used

to assign values to the loop variablei . The loop terminates when the generator is empty.

Since this use of a generator is so common Aldor allows the explicit application of the

generator() function to be omittted. We can also iterate over multiple generators in

parallel with the loop terminating as soon as one of the generators becomes empty:

for i in 0..10 for j in 100.. repeat
foo(i, j);

Some more interesting generators can be seen in the following example:

-- An infinite stream of zeros
Zeros:Generator Integer == generate { repeat yield 0; }

-- An infinite stream of even numbers
Evens:Generator Integer == generate {

for i in 0.. repeat
if (i rem 2) = 0 then yield i;

}

-- Pre-order tree walker
PreOrder(tree:BinaryTree T):Generator T == generate {

if (not empty? tree) then {
yield node tree;
for n in PreOrder(left tree) repeat yield n;
for n in PreOrder(right tree) repeat yield n;

}
}

CHAPTER A. I NTRODUCING ALDOR 151

The first generator consists of a loop which never terminates and whose body is a single

yield. Thus it will always produce the value 0 however many times it is used. The second

generator uses afor loop, which itself uses a generator over the open-ended segment

of integers starting at zero. The test ensures that only even values are obtained. Finally

PreOrder is a function which traverses a binary tree in pre-order and converts it into a

generator—note the recursive definition.

From these examples it can be seen that generators are not simply lists or infinite sequences.

Once a value has been returned by the generator then its execution is suspended until the

next value is requested. Thus generators could conceivably be used to model concurrency

at a primitive level.

A.4.2 Fluid variables

A fluid variable is a variable which has dynamic rather than lexical scope. Such variables

exist throughout the lifetime of a program and may be rebound in any lexical scope. If

rebinding takes place then the original value will be restored once execution leaves that

lexical scope level. This facilty can be very powerful if used correctly. Unfortunately tra-

ditional local program analysis is not sufficient to determine whether or not a fluid variable

has been assigned an initial value, thus use-before-definition errors can easily occur unless

they are used with caution. An example of the use of fluid variables is given below based

on an example in [83, page 115]:

fluid n:Integer := 27;

f():() == print << "n = " << n << newline;

g():() == {
fluid n := 42; -- Re-binding.
f();

}

f(); -- Prints "n = 27" (original value)
g(); -- Prints "n = 42" (using temporary binding)
f(); -- Prints "n = 27" (back to original binding)

CHAPTER A. I NTRODUCING ALDOR 152

A.4.3 Post factoextensions

A problem which often arises during the re-use of libraries in object-oriented systems is

how to extend existing types or classes with new operations. This usually happens when a

type needs to be used in a situation for which it was not designed, even though there is no

reason why it ought not to be.

Consider, for example, a library which provides operations for transmitting data over a

binary channel. When using a language such as C++ we will need to provide operations

to convert values of each data type that we are interested in two and from a format which

is suitable for transmission. These routines could be defined in a class calledFlatten

which is made available to clients of the communications library. However, if we wish

to transmit values from a data type which is not supported byFlatten then we will

need to define a new class,ExtendedFlatten , which provides all the operations of

Flatten along with our extensions. At the same time another developer may define their

ownExtendedFlatten class to support a different set of data types. Anyone who needs

to use both extensions may need to define yet another class and so on.

Aldor provides an alternative in the form ofpost factoextensions. An existing domain or

domain-valued function can be extended at any point to provide additional exports. In the

example above,Flatten could be extended with operations to convert values to and from

any domain we know about. However, a better solution would be to extend the domains

of interest with operations such aspack() andunpack() . Now the communications

library can be defined to use values of any domain which exports these operators. Note

that unlike in Aldor, in a language like C++ this approach suffers from even more problems

than before since new classes would need to be defined for each of the data types of inter-

est. For example, the classPackableInteger could inherit from the class of integers

and provide the packing and unpacking operations. As before, problems arise when a dif-

ferent developer creates a class such asDifferentiableInteger to solve a similar

but unrelated problem. Combining the two might create a class with a name such asDif-

ferentiablePackableInteger or PackableDifferentiableInteger .

Extensions are frequently used in the construction of Aldor libraries. Initially simple im-

plementations of domains such as machine-precision integers (SingleInteger) are pro-

vided. These are later extended to their full functionality and can be extended further by

the user as required. In the example below the library domain of text strings is extended to

CHAPTER A. I NTRODUCING ALDOR 153

provide a ‘+’ operation as a shorthand for string concatenation.

extend String : with {
+ : (%, %) -> %;

} == add {
(a:%) + (b:%):% == concat(a, b);

}

Note that the syntax is similar to that used to define a domain (see Section A.2. The

extended domain will satisfy all the categories the extendee satisfied in addition to the

categories which are specified by the extension.

Appendix B

Reification—source code

In this appendix we give theaxi.om source code each of the implementations that were

described in Chapter 3. Please refer back to that section for the meaning of each function

and the mathematics which lie behind it. We have chosen not to include the interface

specifications with the source code.

154

CHAPTER B. REIFICATION—SOURCE CODE 155

B.1 Level 1 implementation

Thisaxi.om program evaluates Equation 3.14 (see Section 3.1.2) using Equation 3.10.

Fab: (PI, PI) -> Expression(Integer)
Rab: (PI, NNI, PI, NNI) -> Expression(Integer)
Rnl: (PI, NNI) -> Expression(Integer)
Nnl: (PI, NNI) -> Expression(Integer)

Fab(na,nb) ==
na2 := na**2
nb2 := nb**2
na4 := na**4
result := 0::Expression(Integer)
for la in 0..(na - 1) repeat

for lb in 0..(nb - 1) repeat
if (abs(la - lb) = 1) then

rab := Rab(na,la,nb,lb)
result := result + max(la,lb) * rab**2

((nb2 - na2)/(3*nb2*na4)) * result

Rab(na,la,nb,lb) ==
expr := Rnl(na,la) * r**3 * Rnl(nb,lb)
integrate(simplify(expr), r=0..%plusInfinity)

Rnl(n,l) ==
Nnl(n,l) * (2*r/n)**l * exp(-r/n) * laguerreL(2*l+1,n+l,2*r/n)

Nnl(n,l) ==
numerator := factorial(n - l - 1)
denominator := 2*n*factorial(n + l)**3
sqrt((2/n)**3 * (numerator/denominator))

CHAPTER B. REIFICATION—SOURCE CODE 156

B.2 Level 2 implementation

Thisaxi.om program evaluates Equation 3.14 (see Section 3.1.2) using Equation 3.16.

Fab: (PI, PI) -> Expression(Integer)
Rab: (PI, NNI, PI, NNI) -> Expression(Integer)
Qnl: (PI, NNI) -> Expression(Integer)

Fab(na,nb) ==
na2 := na**2
nb2 := nb**2
na4 := na**4
result := 0::Expression(Integer)
for la in 0..(na - 1) repeat

for lb in 0..(nb - 1) repeat
if (abs(la - lb) = 1) then

rab := Rab(na,la,nb,lb)
result := result + max(la,lb) * rab**2

((nb2 - na2)/(3*nb2*na4)) * result

Rab(na,la,nb,lb) ==
alpha := (na + nb) / (na * nb)
expr := Qnl(na,la) * Qnl(nb,lb) * exp(-alpha*r) * r**3
integrate(expr, r=0..%plusInfinity)

Qnl(n,l) ==
term1 := r**l
term2 := (2/n)**((2*l + 3)/2)
numer := factorial(n - l - 1)
denom := 2*n * factorial(n + l)**3
term3 := sqrt(numer/denom)
term1 * term2 * term3 * laguerreL(2*l+1,n+l,2*r/n)

CHAPTER B. REIFICATION—SOURCE CODE 157

B.3 Level 3 implementation

Thisaxi.om program evaluates Equation 3.14 (see Section 3.1.2) using Equation 3.21.

Fab: (PI, PI) -> Float
Rab: (PI, NNI, PI, NNI) -> Float
Qnl: (PI, NNI) -> UnivariatePolynomial(r,Float)

Fab(na,nb) ==
na2 := na**2
nb2 := nb**2
na4 := na**4
result := 0.0
for la in 0..(na - 1) repeat

for lb in 0..(nb - 1) repeat
if (abs(la - lb) = 1) then

rab := Rab(na,la,nb,lb)
result := result + max(la,lb) * rab**2

((nb2 - na2)/(3*nb2*na4)) * result

Rab(na,la,nb,lb) ==
alpha := (na + nb) / (na * nb)
poly := Qnl(na,la) * Qnl(nb,lb) * (r**3)::UP(r,Float)
coeffs := vectorise(poly, degree(poly) + 1)::List(Float)
result := 0.0
for Ci in coeffs for i in 0.. repeat

result := result + Ci*factorial(i)/(alpha**(i + 1))
result

Qnl(n,l) ==
term1 := r**l
term2 := (2.0/n)**((2*l + 3)/2)
numer := factorial(n - l - 1)
denom := 2.0*n * factorial(n + l)**3
term3 := sqrt(numer/denom)
term1 * term2 * term3 * laguerreL(2*l+1,n+l,2*r/n)

CHAPTER B. REIFICATION—SOURCE CODE 158

B.4 Laplace 1 implementation

Thisaxi.om program evaluates Equation 3.14 (see Section 3.1.2) using a Laplace transform.

Fab: (PI, PI) -> Expression(Integer)
Rab: (PI, NNI, PI, NNI) -> Expression(Integer)
Tnl: (PI, NNI) -> Expression(Integer)
Nnl: (PI, NNI) -> Expression(Integer)

Fab(na,nb) ==
na2 := na**2
nb2 := nb**2
na4 := na**4
result := 0::Expression(Integer)
for la in 0..(na - 1) repeat

for lb in 0..(nb - 1) repeat
if (abs(la - lb) = 1) then

rab := Rab(na,la,nb,lb)
result := result + max(la,lb) * rab**2

((nb2 - na2)/(3*nb2*na4)) * result

Rab(na,la,nb,lb) ==
expr := Tnl(na,la) * r**3 * Tnl(nb,lb)
result := laplace(expr,r,s)
eval(result,s = (na + nb)/(na*nb))

Tnl(n,l) ==
Nnl(n,l) * (2*r/n)**l * laguerreL(2*l+1,n+l,2*r/n)

Nnl(n,l) ==
numerator := factorial(n - l - 1)
denominator := 2*n*factorial(n + l)**3
sqrt((2/n)**3 * (numerator/denominator))

CHAPTER B. REIFICATION—SOURCE CODE 159

B.5 Laplace 2 implementation

Thisaxi.om program evaluates Equation 3.14 (see Section 3.1.2) using a Laplace transform.

Fab: (PI, PI) -> Expression(Integer)
Rab: (PI, NNI, PI, NNI) -> Expression(Integer)
Qnl: (PI, NNI) -> Expression(Integer)

Fab(na,nb) ==
na2 := na**2
nb2 := nb**2
na4 := na**4
result := 0::Expression(Integer)
for la in 0..(na - 1) repeat

for lb in 0..(nb - 1) repeat
if (abs(la - lb) = 1) then

rab := Rab(na,la,nb,lb)
result := result + max(la,lb) * rab**2

((nb2 - na2)/(3*nb2*na4)) * result

Rab(na,la,nb,lb) ==
expr := Qnl(na,la) * Qnl(nb,lb) * r**3
result := laplace(expr,r,s)
eval(result,s = (na + nb)/(na*nb))

Qnl(n,l) ==
term1 := r**l
term2 := (2/n)**((2*l + 3)/2)
numer := factorial(n - l - 1)
denom := 2*n * factorial(n + l)**3
term3 := sqrt(numer/denom)
term1 * term2 * term3 * laguerreL(2*l+1,n+l,2*r/n)

Appendix C

VC generation—source code

In this appendix we give the Aldor source code for various parts of the prototype lightweight

verification condition generator that we have developed (see Section 5.3). The full program

contains about 8500 lines of code, most of which is quite dull. Instead we have extracted

parts of the program which may be of interest to the reader.

C.1 Annotating programs

The first task of our VC generator is to translate the annotations provided by the user into

a form where each identifier is marked with its state. During this phase the VC genera-

tor will also add annotations to statements for which the semantics are clearly understood.

The most obvious example of this is the assignment statement. The top level of the an-

notation phase is implemented by theannotate! function which modifies the internal

representation of the annotated programin situ.

In the code below, the%symbol can be regarded as an abbreviation for the Aldor domain

of annotated programs. The meaning of other domains are given in the table below:

LslSymbol Identifier with a specific name and state

LarchAldorSpecification User annotation

SExpression LISP expression,e.g.pairs

160

CHAPTER C. VC GENERATION—SOURCE CODE 161

annotate!(p:%):LslSymbol == {
-- Perform renaming on specifications before and after the
-- main annotation phase for this node.
import from Character;

local result:LslSymbol;
local spec, fixed, final:LarchAldorSpecification;
local modList:List(SExpression);
local preState, postState, fixedState:List(LslSymbol);
local specState, otherState:List(LslSymbol);

-- Extract the user’s specification and fix any missing state
-- annotations. Unqualified identifiers in the pre-condition
-- are defined to be in the pre-state. Unqualified identifiers
-- in the post-condition are assumed to be in the post-state.
spec := getUserSpecification(p);
fixed := fixSpec(spec, char("ˆ"), char("’"));

-- Rename the identifiers listed in their pre-state. In doing
-- so we note and new identifiers which have been defined.
(fixed, specState) := renameState(fixed, char("ˆ"));
setUserSpecification!(p, fixed);

-- Check to see if the user’s specification lists identifiers
-- which are modified by the body of the expression and note
-- their current state so that we can mutate them later.
modList := getUserModifiesList(p);
preState := getCurrentState(modList);

-- Here is the main (recursive) annotation step.
result := annotateNode!(p);

-- Get the state of potentially mutated variables now.
postState := getCurrentState(modList);

-- Fix any mutations which might have occurred and
-- update the symbol table.
fixedState := fixMutations(preState, postState);
for sym in fixedState repeat

insertIntoTable!(sym);

CHAPTER C. VC GENERATION—SOURCE CODE 162

-- Now rename the identifiers listed in the post-state.
spec := getUserSpecification(p);
(final, otherState) := renameState(spec, char("’"));
setUserSpecification!(p, final);

-- If everything is okay then otherSyms ought to be empty. If
-- not we tell the user (code omitted).
-- if (not(empty?(otherState))) then { ... }

-- Decorate this node with the list of new LSL symbols. This
-- helps later phases of the analyser know when new logical
-- symbols have been introduced due to state changes.
addNewSymbols!(p, postState);
addNewSymbols!(p, fixedState);
addNewSymbols!(p, specState);
addNewSymbols!(p, otherState);

-- The return value is the logical symbol representing the
-- value of this node (if any).
result;

}

The implementation of the recursive functionannotateNode! is trivial:

local annotateNode!(p:%):LslSymbol == {
-- Extract the internal representation.
local s:SourceBodyType := (rep p).srcBody;

-- Check each case in turn: start with the easy cases.
empty?(p) => NoSymbol;
unknown?(p) => NoSymbol;

-- Proceed with the other cases.
(s case applyExpr) => annotateApply!(p);
(s case assignExpr) => annotateAssign!(p);
(s case declareExpr) => annotateDeclare!(p);
(s case idExpr) => annotateId!(p);
(s case sequenceExpr) => annotateSequence!(p);

-- Other cases we just want to ignore.
NoSymbol;

}

CHAPTER C. VC GENERATION—SOURCE CODE 163

Finally we give an example of one of the low-level annotation functions:

local annotateId!(id:%):LslSymbol == {
-->> (Id <id> <typ>)
import from SymbolTable(String, LslSymbol);

local sort, idsym, symb:String;
local found:Boolean;
local lslsym:LslSymbol;

-- Extract the name and sort name of this identifier.
sort := flattenType((rep id).srcBody.idExpr.type);
idsym := ((rep id).srcBody.idExpr.sym);

-- Combine to give a symbol name then check to see if
-- it has an associated LSL symbol.
symb := idsym + ":" + sort;
(found, lslsym) := lookupInTable(symb);

-- Did we find it? If yes then do nothing otherwise ...
if not(found) then {

-- This is the first time that the symbol has been
-- declared so this must be its declaration. Create
-- an LSL representation of this symbol and add it
-- to the symbol table.
lslsym := symb::LslSymbol; -- :: means coerce().
insertIntoTable!(lslsym);

-- Decorate this node with the new LSL symbol.
addNewSymbols!(id, list(lslsym)$List(LslSymbol));

}

-- Return the LSL symbol associated with this node
lslsym;

}

C.2 VC generation

The generation of VCs is straightforward once the annotation phase has completed its work.

Any node which does not have a post-condition in the user-annotation is recursively verified

CHAPTER C. VC GENERATION—SOURCE CODE 164

to obtain an estimate of the actual post-condition. Nodes which do have user-supplied post-

conditions are not examined and the user annotation defines its semantics (the lightweight

approach). Pre-conditions are transformed into VCs while post-conditions are used to up-

date our knowledge of the current state of the program.

First we show the top-level verification function: thePath domain is used to hold the

list of VCs generated for this program and the current state. Each VC is marked with the

position at which it appears in the source code of the user’s annotated program.

verify(node:%, P:Path):Path == {
-- Deal with the preconditions (VC generation)
local path := verifyPreState(node, P);

-- Has the user given us a post-conditions? If so then we
-- skip over the body of this node and trust that the post-
-- condition tells us enough about what is going on.
if (empty?(getUserPostCondition(node))) then

path := verifyNode(node, path);

-- Deal with the postconditions (update context) and
-- return the resulting VCs and new context.
verifyPostState(node, path);

}

Generation of VCs is a little more involved: we store them together until we have finished

the verification phase before giving them to the user. This helps to retain modularity and

allows the VCs to be converted into the object language of a theorem prover with ease.

local verifyPreState(node:%, P:Path):Path == {
-- This routine deals with the preconditions.
local items:List(VCitem);
local vcs:Predicate;
local vcitem:VCitem;
local context:Context;

local path:Path := P;
local result:List(Path) := empty();
local srcpos:SourceInfo == getSourcePosition(node);

CHAPTER C. VC GENERATION—SOURCE CODE 165

-- Extract the context and the VCs.
context := context(path);
items := vcitems(path);

-- Extend the context by any assertions
context := conjoin(context, getUserAssertion(node));
context := conjoin(context, getInternalAssertion(node));

-- Add the automatically generated pre-condition to context
context := conjoin(context, getInternalPreCondition(node));
vcitem := [c == copy(context), p == empty(), pos == srcpos,

label == "Semantic pre-condition",
syms == empty()];

items := cons(vcitem, items);

-- Generate VCs from the user’s pre-condition
vcs := getUserPreCondition(node);
vcitem := [c == copy(context), p == vcs, pos == srcpos,

label == "User-supplied pre-condition",
syms == (rep node).srcSyms];

items := cons(vcitem, items);

-- Return the path using the new contexts.
new(position(path), items, context);

}

The processing of the post-conditions is similar and will not be shown here. The function

verifyNode is almost identical toannotateNode! and will not be shown either.

Instead we show how assignments are analysed:

verifyAssign(p:%, P:Path):Path == {
local lhs, rhs:%;

-- Access the LHS and RHS of the assignment
-- branch of the union has been given to us.
lhs := (rep p).srcBody.assignExpr.decl;
rhs := (rep p).srcBody.assignExpr.expr;

-- Verify the RHS then the LHS.
verify(lhs, verify(rhs, P));

}

Bibliography

[1] ADAMS, A., GOTTLIEBSEN, H., LINTON, S., AND MARTIN , U. VSDITLU: a

verified symbolic definite integral table look-up. InCADE 16(1999), pp. 112–126.

[2] AHO, A. V., SETHI, R., AND ULLMAN , J. D. Compilers—Principles, Techniques,

and Tools. Computer Science. Addison-Wesley, 1986.

[3] BARRAS, B., BOUTIN, S.,ET AL . The COQ proof assistant reference manual (Ver-

sion 6.1). Tech. rep., INRIA, 1996.

[4] BARRETT, G. Formal methods applied to a floating-point number system.IEEE

Transactions on Software Engineering 15, 5 (May 1989), 611–621.

[5] BAUER, A., CLARKE , E., AND ZHAO, X. Analytica—an experiment in combin-

ing theorem proving and symbolic computation.Journal of Automated Reasoning, 3

(1998), 295–325.

[6] BRANSDEN, B. H., AND JOACHAIN , C. J. Introduction to Quantum Mechanics,

first ed. Longman Scientific and Technical, 1989.

[7] BRONSTEIN, M. SUM-IT: A strongly-typed embeddable computer algebra library.

In Proceedings of DISCO’96(1996), vol. 1128 ofLecture Notes in Computer Science.

[8] BROOKS, F. P.The Mythical Man-month, anniversary ed. Addison Wesley, 1995.

[9] BROWN, R., AND TONKS, A. Calculations with simplical and cubical groups in

AXIOM. Journal of Symbolic Computation 17(1994), 159–179.

[10] CALMET, J.,AND VAN HULZEN, J. A. Computer Algebra - Symbolic and Algebraic

Computation, first ed. No. 4 in Computing Supplementum. Springer-Verlag, 1982,

ch. Computer Algebra Applications, pp. 245–258.

166

167

[11] CARDELLI , L., AND WEGNER, P. On understanding types, data abstraction, and

polymorphism.Computing Surveys 17(Dec. 1985), 471–522.

[12] CHALIN , P. On the language design and semantic foundation of LCL, a Larch/C inter-

face specification language. Tech. Rep. CU/DCS-TR-95-12, Department of Computer

Science, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec,

Canada H3G 1M8, Dec. 1995.

[13] CHAR, B. W. Maple V language Reference Manual. Springer-Verlag, 1991.

[14] CHEON, Y., AND LEAVENS, G. T. A gentle introduction to Larch/Smalltalk specifi-

cation browsers. Tech. Rep. TR 94-01, Department of Computer Science, Iowa State

University, 226 Atanasoff Hall, Ames, Iowa 50011-1040, USA, Jan. 1994.

[15] CHETALI , B., AND LESCANNE, P. An exercise in LP: The proof of a non restoring

division circuit. InFirst International Workshop on Larch(July 1992), U. Martin and

J. M. Wing, Eds., Workshops in Computing, Springer-Verlag, pp. 55–68.

[16] CRAIGEN, D., AND AMD TED RALSTON, S. G. An international survey of industrial

applications of formal methods. Tech. rep., U.S. Department of Commerce, Mar.

1993.

[17] DAVENPORT, J. H. The AXIOM system. Tech. Rep. TR5/92 (NP2492), The Numer-

ical Algorithms Group (NAG) Ltd., 1992.

[18] DAVENPORT, J. H., GIANNI , P.,AND TRAGER, B. M. Scratchpad’s view of algebra

II: A categorical view of factorization. Tech. Rep. TR4/92 (NP2491), The Numerical

Algorithms Group (NAG) Ltd., 1992.

[19] DAVENPORT, J. H.,AND TRAGER, B. M. Scratchpad’s view of algebra I: Basic com-

mutative algebra. Tech. Rep. TR3/92 (NP2490), The Numerical Algorithms Group

(NAG) Ltd., 1992.

[20] DE BRUIJN, N. The mathematical language AUTOMATH, its usage, and some of its

extensions. InSymposium on Automatic Demonstration(1968), vol. 125 ofLecture

Notes in Mathematics, Springer-Verlag.

[21] DECK, M. Cleanroom and object-oriented engineering: A unique synergy. InPro-

ceedings of the Eighth Annual Software Technology Conference(1996).

168

[22] DETLEFS, D. L., LEINO, K. R. M., NELSON, G., AND SAXE , J. B. Extended Static

Checking. Tech. Rep. 159, Compaq SRC, Dec. 1998.

[23] DROMEY, G. Program Derivation, first ed. International Computer Science Series.

Addison Wesley, 1989.

[24] EVANS, D. Using specifications to check source code. Master’s thesis, Department

of Electrical Engineering and Computer Science, MIT Lab. for Computer Science,

545 Technology Square, Cambridge, MA 02139, June 1994.

[25] EVANS, D., GUTTAG, J., HORNING, J., AND TAN , Y. M. LCLint: a tool for using

specifications to check code. Pre-print, Dec. 1994.

[26] FEIT, W., AND THOMPSON, J. G. Solvability of groups of odd order.Pacific Journal

of Mathematics 13(1963), 775–1029.

[27] FLANAGAN , D. Java in a nutshell, second ed. O’Reilly, 1997.

[28] FLOYD , R. W. Assigning meanings to programs.Proceedings of the American Math-

ematical Society Symposium on Applied Mathematics 19(Apr. 1967), 19–32.

[29] FOSDICK, L. D., AND OSTERWEIL, L. J. Data flow analysis in software reliability.

Computing Surveys 8 (3)(Sept. 1976), 305–330.

[30] FRANCEZ, N. Program Verification. Addison-Wesley, 1992.

[31] THE GAP GROUP. GAP–Groups, Algorithms, and Programming, Version 4. Aachen,

St Andrews, 1998. Available on the WWW atwww-gap.dcs.st-and.ac.uk/˜ gap.

[32] GHEZZI, C., AND JAZAYERI , M. Programming Language Concepts. John Wiley

and Sons, 1987.

[33] GORDON, M. J. C. Programming language theory and its implementation. Series in

Computer Science. Prentice Hall International, 1988.

[34] GORDON, M. J. C.,AND MELHAM , T. F., Eds. Introduction to HOL. Cambridge

University Press, Cambridge, 1993. A theorem proving environment for higher order

logic, Appendix B by R. J. Boulton.

[35] GUASPARI, D., MARCEAU, C., AND POLAK , W. Formal verification of Ada pro-

grams. InFirst International Workshop on Larch(July 1992), U. Martin and J. Wing,

Eds., Springer-Verlag, pp. 104–141.

169

[36] GUTTAG, J. V., AND HORNING, J. J. Introduction to LCL, a Larch/C interface

language. Tech. Rep. TR-74, DEC SRC, July 1991.

[37] GUTTAG, J. V., AND HORNING, J. J. Larch: Languages and Tools for Formal

Specification, first ed. Texts and Monographs in Computer Science. Springer-Verlag,

1993.

[38] HARRISON, J. Constructing the real numbers in HOL.Formal Methods in System

Design 5(1994), 35–59.

[39] HARRISON, J. Floating point verification in HOL. InHigher Order Logic Theorem

Proving and Its Applications: Proceedings of the 8th International Workshop(Aspen

Grove, Utah, Sept. 1995), W. Phillip J, T. Schubert, and J. Alves-Foss, Eds., vol. 971

of Lecture Notes in Computer Science, Springer-Verlag, pp. 186–199.

[40] HARRISON, J.,AND THÉRY, L. Extending the HOL theorem prover with a computer

algebra system to reason about the reals. InProceedings of the 1993 International

Workshop on the HOL theorem proving system and its applications(UBC, Vancouver,

Canada, Aug. 1993), J. J. Joyce and C. Seger, Eds., vol. 780 ofLecture Notes in

Computer Science, Springer-Verlag, pp. 174–184.

[41] HESKETH, J., BUNDY, A., AND SMAILL , A. Using middle-out reasoning to control

the synthesis of tail-recursive programs. InAutomated Deduction—CADE-11(June

1992), D. Kapur, Ed., vol. 607 ofLecture Notes in Artificial Intelligence, pp. 310–324.

[42] HOARE, C. A. R. An axiomatic basis for computer programming.Communications

of the ACM 12(Oct. 1969), 576–583.

[43] HOMANN , K., AND CALMET, J. Combining theorem proving and symbolic mathe-

matical computing, vol. 958 ofLecture Notes in Computer Science. Springer, 1994.

[44] HUDAK , P., JONES, S. L. P., WADLER, P., ET AL . A report on the functional

language Haskell.SIGPLAN Notices(1992).

[45] JACKSON, D. Aspect: A Formal Specification Language for Detecting Bugs. PhD

thesis, Laboratory for Computer Science, June MIT.

[46] JACKSON, P. Exploring abstract algebra in constructive type theory. InAutomated

Deduction(1994), A. Bundy, Ed., vol. 814 ofLecture Notes in Artificial Intelligence,

CADE-12, Springer-Verlag.

170

[47] JACKSON, P. Enhancing the NUPRL Proof Development System and Applying it

to Computational Abstract Algebra. PhD thesis, Department of Computer Science,

Cornell University, Ithaca, New York, Apr. 1995.

[48] JENKS, R. D., AND SUTOR, R. S. AXIOM: the scientific computation system. Nu-

merical Algorithms Group Ltd., 1992.

[49] JONES, C. Logical Environments. Cambridge University Press, 1993, ch. Completing

the Rationals and Metric Spaces in LEGO.

[50] JONES, C. B. Systematic Software Development using VDM, second ed. Computer

Science. Prentice Hall International, 1990.

[51] JONES, K. D. LM3: a Larch interface language for Modula-3, a definition and intro-

duction. Tech. Rep. 72, SRC, Digital Equipment Corporation, Palo Alto, California,

June 1991.

[52] KELSEY, T. In preparation. PhD thesis, University of St Andrews, 1999.

[53] K ING, D. J.,AND ARTHAN, R. D. Development of practical verification tools.The

ICL Systems Journal 1(May 1996).

[54] K ING, J. C. Symbolic execution and program testing.Communications of the ACM

19(7)(July 1976), 385–394.

[55] KNUTH, D. E. The remaining trouble spots in ALGOL 60.Communications of the

ACM 10(Oct. 1967), 611–617.

[56] LEAVENS, G. An overview of Larch/C++: behavioral specifications for C++ mod-

ules. Tech. rep., Iowa State University, July 1997.

[57] LEAVENS, G. T. Larch/C++ Reference Manual. Available from the WWW at

www.cs.iastate.edu/˜ leavens/larchc++.html.

[58] LEAVENS, G. T. Inheritence of interface specifications (extended abstract). Tech.

Rep. TR 93-23, Department of Computer Science, Iowa State University, 226 Atana-

soff Hall, Ames, Iowa 50011-1040, USA, Sept. 1993. Submitted to the Workshop on

Interface Definition Languages.

171

[59] LEAVENS, G. T., AND CHEON, Y. Preliminary design of Larch/C++. InFirst Inter-

national Workshop on Larch(July 1992), U. Martin and J. M. Wing, Eds., Workshops

in Computing, Springer-Verlag, pp. 159–184.

[60] LEAVENS, G. T., AND WING, J. M. Protection from the underspecified. Tech. Rep.

CS-96-129, Carnegie Mellon University, Apr. 1996.

[61] LERNER, R. A. Specifying Objects of Concurrent Systems. PhD thesis, Computer

Science, Carnegie Mellon University, Pittsburgh, PA 15213, May 1991.

[62] L ISKOV, B., AND GUTTAG, J. Abstraction and Specification in Program Develop-

ment. The MIT Electrical Engineering and Computer Science Series. MIT Press,

Cambridge, MA, 1986.

[63] MANNHART, N.
∏it : an aldor library to express parallel programs. Available on the

WWW at www.inf.ethz.ch/personal/mannhart.

[64] MARTIN , U., AND WING, J. M., Eds.First International Workshop on Larch(June

1992), Workshops in Computing, Springer-Verlag.

[65] MEYER, B. Object-Oriented Software Construction. Computer Science. Prentice

Hall International, 1988.

[66] MORRISON, R. On the Development of Algol. PhD thesis, Department of Computa-

tional Science, University of St. Andrews, Dec. 1979.

[67] OLENDER, K. M., AND OSTERWEIL, L. J. Interprocedural static analysis of se-

quencing constraints. InACM Transactions on Software Engineering and Methodol-

ogy, vol. 1. Jan. 1992, pp. 21–52.

[68] OWRE, S., SHANKAR , N., AND RUSHBY, J. M. User Guide for the PVS Specifica-

tion and Verification System. Computer Science Laboratory, SRI International, Menlo

Park, CA, Feb. 1993.

[69] PERRY, D. E. The Inscape environment. InThe 11th International Conference on

Software Engineering(May 1989).

[70] POLL , E., AND THOMPSON, S. Adding the axioms to Axiom: Towards a system

of automated reasoning in Aldor. Technical Report 6-98, Computing Laboratory,

University of Kent, May 1998.

172

[71] POLL , E., AND THOMPSON, S. The Type System of Aldor. Tech. Rep. 11-99,

Computing Laboratory, University of Kent at Canterbury, Kent CT2 7NF, UK, July

1999.

[72] POTTER, B., SINCLAIR , J., AND TILL , D. An introduction to formal specification

and Z. Prentice Hall International, 1991.

[73] RIDEAU , P. Computer algebra and mechanics: the JAMES software. Wiley, 1993,

pp. 143–158.

[74] ROSENBLUM, D. S. A practical approach to programming with assertions.IEEE

transactions on software engineering 21(Jan. 1995), 19–31.

[75] SANNELLA , D. Formal program development in Extended ML for the working pro-

grammer. InProceedings of the 3rd BCS/FACS Workshop on Refinement(1990),

Springer Workshops in Computing, pp. 99–130.

[76] SCOTT, E. A., AND NORRIE, K. J. Using LP to study the language PL+
0 . In First

International Workshop on Larch(June 1992), U. Martin and J. M. Wing, Eds., Work-

shops in Computing, Springer-Verlag, pp. 227–245.

[77] SIVAPRASAD, G. S. Larch/CORBA: Specifying the behaviour of CORBA-IDL in-

terfaces. Master’s thesis, Computer Science, Iowa State University, Ames, Iowa,

50011-1040, USA, Nov. 1995. See:www.cs.iastate.edu/.

[78] SOMMERVILLE , I. Software Engineering, fourth ed. Addison-Wesley, 1992.

[79] SUN M ICROSYSTEMSINC. Programmers Overview, Utilities and Libraries. 2550

Garcia Avenue, Mountain View, CA 94043. Chapter 6,lint—a Program Verifier for

C.

[80] TAN , Y. M. Semantic analysis of Larch interface specifications. InFirst Interna-

tional Workshop on Larch(July 1992), U. Martin and J. M. Wing, Eds., Workshops

in Computing, Springer-Verlag, pp. 246–261.

[81] VAN HULZEN, J. A.,AND CALMET, J. Computer Algebra - Symbolic and Algebraic

Computation, first ed. No. 4 in Computing Supplementum. Springer-Verlag, 1982,

ch. Computer Algebra Systems, pp. 221–243.

173

[82] VANDEVOORDE, M. T. Exploiting Specifications To Improve Program Performance.

PhD thesis, Laboratory for Computer Science, MIT, 545 Technology Square, Cam-

bridge, Massachusetts, Feb. 1994. MIT/LCS/TR-598.

[83] WATT, S. M., BROADBERY, P. A., DOOLEY, S. S., IGLIO, P., MORRISON, S. C.,

STEINBACH, J. M., AND SUTOR, R. S. AXIOM Library Compiler User Guide,

first ed. NAG Ltd., Mar. 1995. Reprinted with corrections from November 1994.

[84] WING, J. M. A two-tiered approach to specifying programs. Tech. Rep. LCS/TR–

299, Laboratory for Computer Science, MIT, May 1983.

[85] WING, J. M., ROLLINS, E., AND ZAREMSKI, A. M. Thoughts on a Larch/ML

and a new application for TP. InFirst International Workshop on Larch(July 1992),

U. Martin and J. M. Wing, Eds., Workshops in Computing, Springer-Verlag, pp. 297–

312.

[86] WOLFRAM, S. Mathematica: A system for doing mathematics by computer, 2 ed.

Addison Wesley, 1991.

[87] WYLIE , C. R. Advanced Engineering Mathematics, International Student ed.

McGraw-Hill, 1975.

[88] ZAREMSKI, A. M., AND WING, J. M. Specification matching of software compo-

nents.Proceedings of 3rd ACM SIGSOFT Symposium on the Foundations of Software

Engineering(Oct. 1995).

