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Abstract

We propose that the mode of memory allocation in Aldor should be
another “orthogonal” property to be associated with objects. We
discuss the reasons for this in the context of large-scale numerical
computations using Aldor (the Paraldor project), and we consider
what changes might be required in the compiler.

1 Memory Allocation Strategy

1.1 Introduction

We shall consider the issue of memory allocation in the context of the
Paraldor project, which is an attempt to implement large-scale numer-
ical computations for massively parallel machines in Aldor. Unlike
more conventional applications of Aldor in computer algebra we have
to deal with large objects whose extents are known at compile time,
and performance issues are critical.

1.2 Stacks or heaps?

One of the basic precepts of Aldor is that the user should write code
to implement an algorithm in terms of categories describing the (min-
imal) structure necessary for its correct behaviour. A by-product of
this is that the user cannot and should not know about the implemen-
tation of the domains which implement these categories. A corollary
of this is that memory management cannot be left to user control.



There might be cases where the user might give hints to the compiler
in an manner analogous to the inline hint to the optimiser, but there
is some evidence (or folklore?) that even the simple register mem-
ory allocation hint in C is rarely of any use. At some level within the
hierarchy of domains implementing the categories the type of mem-
ory management should be specified, and this should be viewed as an
attribute of the Rep of the object, and methods will be provided to
create and destroy these objects. It is usually (perhaps always) ob-
vious when an object needs to be created, but the implementation of
the domain has no way of knowing when it needs to be destroyed.

This requirement for a “fully automatic” memory allocation mecha-
nism naturally points us towards a heap allocation strategy. However,
although a heap storage allocation strategy is the most general way
of allocating memory for objects, it has certain disadvantages. The
principal of these are fragmentation and memory leaks.

e Fragmentation. Heaps are wonderful when we are allocating lots
of small uniform sized objects. If the objects are small then
we do not have to be niggardly about having a few more of
them around at any given time, and if they are uniform then
new objects can immediately fill the gaps left by their fallen
comrades. In our application the objects are large, to the extent
that a few tens or hundreds of them will fill the whole of memory,
and come in various sizes. In fact, the object do not usually
come in very many different sizes, so it is possible to think in
terms of allocating different sized ones in different memory pools,
but a naive heap would rapidly get indigestion when we allocate
our huge vector objects and tiny scalar objects in an interwoven
fashion. Heap compaction is possible, but most undesirable in
view of its unnecessary cost.

e Memory leaks. The fact that the implementation of a domain
can provide a destroy! method does not mean that it will ever
be called, and in languages like C++ where it is the user’s respon-
sibility to ensure that heap-allocated objects are freed programs
are often replete with memory leaks when they forget to do so
(or with bugs when they do so too early!). The canonical so-
lution to this, familiar from the prehistory of Lisp, is garbage
collection.

e Garbage collection. There are several varieties of garbage col-
lectors available on the market. They can be synchronous (as
in Aldor at present) or asynchronous (as in Java, where the
garbage collector and finanliser run in their own threads). They



can be scavangers or use reference counting. Reference counting
is quite an attractive option for us as our objects are large, and
usually only have a single reference to them. On the other hand
the more popular scavenging approach is an anathema on a data
parallel machine where all the processors have to wait when a
single one decides it is time to go hunting. One might imagine
that on a data parallel machine all the processors would garbage
collect at the same time, but this behaviour is spoiled if one node
uses a little extra memory (for some I/O operation perhaps), or
if one node’s data just happens to look more like a dirty pointer
than another’s.

In any case, the main objection to heaps and garbage collection is that
they waste time and space and are not necessary in applications where
we do not return objects of variable or unknown size. For our purposes
stacks are adequate and, as a rule, they are faster and smaller.

An important distinction should be made at this point, as a general
stack should not be confused with automatically allocated variables
in C, which are allocated in a routine’s frame. Every thread has a
call frame stack, onto which a frame is pushed whenever a routine (or
more generally a block) is entered, and which is popped when it is
exited. There is no reason why this particular stack has to be used
for allocating our large objects, indeed we often want a routine to be
able to return a new object, and this would be a futile thing to do if
the object were to be allocated on the call frame.

2 Memory Spaces

We propose the following approach to memory allocation in Aldor.
The user should be able to define a collection of memory spaces, each
of which may have a maximum size, be associated with a level of the
hardware memory hierarchy, have a specified latency, have different
allocation strategies, etc.

Furthermore, each memory space should have an attribute which, for
want of a better name, we may call direct or indirect. It is not
allowed to construct a pointer to an object in a direct memory space,
whereas this is permitted in an indirect memory space. A direct
memory space may therefore contain simple values, arrays, records,
unions, etc., but not linked lists or trees.

When a new object is allocated memory, this memory should be



charged to a memory space. The compiler should be informed which
memory space is to be used and be given a bound on the amount
of memory required for this allocation. Perhaps new! and dispose!
methods should be required which handle the construction and de-
struction of objects in the style of C++.

In general the task of calling the dispose! method for an indirect
memory space is not the responsibility of the compiler: for a heap
a garbage collector might be provided as part of the library at it
could generate calls to dispose! as appropriate. The compiler might
provide such a garbage collector for a default memory space as at
present, but in general the implementor of the memory space would
provide a custom garbage collector.

For a direct memory space the compiler should generate calls to
dispose! for an object when it becomes inaccessible. This can hap-
pen either when the relevant frame is popped off the call frame stack
and the object is not explicitly used as a return value, or when a
compiler-generated temporary is no longer required. For variables allo-
cated in a stack-based memory space the compiler must call destroy!
in the reverse order to that in which the objects were created. Since
there can be no aliasing in a direct memory space this strategy should
be safe.

The key point is that we require the compiler to make visible (by call-
ing dispose!) its temporary allocations. The user could manage his
own memory allocation scheme for his own explicitly declared variables
and constants, but unless he is prepared to forego the use of expres-
sions' he cannot control the allocation of temporaries. Since we only
require the compiler to do this for the new class of direct memory
spaces it will not change existing semantics. The most straightfor-
ward algorithm for generating code from an expression tree generates
stack-allocated temporaries automatically. If the compiler is smarter,
and does fancy things with common expression elimination, lifetime
analysis, etc., then more interesting space versus time tradeoffs can be
considered. Even the simplest approach should be adequate for most
purposes.

The use of memory spaces could be made more sophisticated if desired.
For instance, the compiler could choose the memory space in which to
allocate an object on the basis of its frequency of reference (using the
same heuristics as for inlineing) and its size. For this to be possible
at compile time the compiler would need to be able to estimate the
object’s size, and we propose that this should be done by requiring

1One can write assembler code in any language!
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each new! method to declare a bound on the size of the object. If an
external routine is called which allocates memory, then it should pro-
vide as part of its interface specification a machine-readable bound on
its memory use (for each memory space). If all builtin and external
memory-allocating routines do this then bounds for any new! method
can be computed automatically.

The trick is to choose a form for the bounds which is simple enough
that the compiler can generate fast run time code to estimate the
object’s size, but good enough that the bounds are not unrealistic.
We suggest that the bounds should be piecewise linear functions of
a set of scaling parameters (e.g., volume, number of widgets), which
should be adequate in most practical cases.
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