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INTRODUCTION



Formal Methods for Extensions to CAS Introdution

Computer Algebra Development
Problems Z 1x=0 dx4x4 + 1 = 0 in AXIOMZ 10 osxx2 + 1dx 2 C in Maple
Designers� Type system & default methods� Sound mathematial algorithmsLibrary Developers� Are the type system and methods unambiguous?� Are the restritions on algorithms expliit?
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Formal Methods for Extensions to CAS Introdution

Lightweight Formal Methods
Lightweight?� Jakson and Wing, IEEE Computer 1996� Replae provable orretness of system by an emphasison the redution (if not the elimination) of design andimplementation errors.
Appliability to CAS� Parts of CAS are formal enough� Veri�ation of maths ode an be non-trivial� Developers need preise de�nitions and onditions for use
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Formal Methods for Extensions to CAS Introdution

Aims
Larh and AXIOM� Larh is two-tiered: abstrat and interfae� AXIOM is two-tiered: ategory and domain� LSL spei�ation of type hierarhy� Larh/Aldor spei�ation of new ode
Bene�ts� Unambiguous de�nition of primitives� LP proofs of abstrat properties� Automati generation of Veri�ation Conditions� LP available to disharge VCs
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Formal Methods for Extensions to CAS Introdution
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Formal Methods for Extensions to CAS Introdution
Abstrat Algebra

Commutative Ring� Additive abelian group - a + b = b + a, a + 0 = a� Multipliative abelian monoid - a � b = b � a, a � 1 = a� Multipliation distributes over additiona � (b + ) = a � b + a � � Example - polynomials over QIntegral Domain� Commutative ring with no zero divisors� Two non-zeros multiply to a non-zero� Example - the integers ZField� Integral domain with multipliative inverses� If a 6= 0, then 9 b suh that a � b = 1� Examples - the reals R and the rationals Q
Martin Dunstan, Tom Kelsey, Ursula Martin & Steve Linton 6



CASE STUDY



Formal Methods for Extensions to CAS Case Study
Motivation

� Given side-onditions for AXIOM types� Conditions are informal omments whih an beinaurate
ComplexCategory(R:CommutativeRing):... ... ...if R has IntegralDomain then IntegralDomainif R has Field then Field -- this is a lie; wemust know that x**2+1 is irreduible in R... ... ...We know that augmenting a ommutative ring with animaginary element should yield another ommutative ring� The library developer{ may not be aware of the omments{ an be misled by the omments
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Formal Methods for Extensions to CAS Case Study
ComplexCategory (CR) : traitassumes CommRingCat (CR)inludes RequirementsForComplex (CR)introduesimaginary, 0, 1 : ! T... ... ...asserts 8 w,z : Timaginary == omp(0,1);0 == omp(0,0);1 == omp(1,0);... ... ...impliesAbelianGroup(T,+),AbelianMonoid(T,*)Distributive(+,*,T), 9=;A8 z,w : Timaginary*imaginary == -1; 	B
A: Commutative ring in gives ommutative ring outB: Chek on basi property of imaginary

Martin Dunstan, Tom Kelsey, Ursula Martin & Steve Linton 9



Formal Methods for Extensions to CAS Case Study
TypeConditions (CR,T) : traitinludesCommRingCat (CR), ComplexCategory (CR)introduesTC1, TC2, invsExist : ! Boolasserts 8 a,b, : CRTC1 ) (a := 0 ) a*a := -(b*b));TC2 ) (a*a := -1);invsExist ) (a := 0 ) 9  (a* = 1))implies 8 v,z,w : TTC1 ^ nZD ^ invsExist) (w := 0 ) 9 v (w*v = 1)); �ATC2 ^ nZD ^ invsExist) (w*z=0 ) w=0 _ z=0); �BTC1 ^ nZD ) (w*z=0 ) w=0 _ z=0) 	C
If input is:A: a �eld with TC1, then output is a �eldB: a �eld with TC2, then output is an integral domainC: an integral domain with TC1, then output is an integraldomain
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Formal Methods for Extensions to CAS Case Study
Interfae Approah

Same problem in a di�erent, yet omplimentary, way1. De�ne the funtor Complex in Larh/Aldor++} requires isIntDomain(CR)^ :9 x,y:CR � (x 6= 0 ) x*x + y*y = 0);++} ensures isIntDomain(%);++} modifies nothing;Complex(CR:CommutativeRing):CommutativeRing;2. Instantiation with Int generates the VCisIntDomain(Int)^:9x; y : Int�(x 6= 0 ) x2+y2 = 0)3. We obtain the useful post-onditionisIntDomain(Complex(Int))4. Instantiation with PrimeField 5 generates the VC:9x; y : PrimeField5 � (x 6= 0 ) x2 + y2 = 0)whih an be proved false (x = 2, y = 4)
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CONCLUSIONS



Formal Methods for Extensions to CAS Conlusions

LSL Spei�ations
� Exist for every algebrai AXIOM ategory� Exist for AXIOM funtors (Fration, Complex, � � � )� Re�ned using textbook properties (e.g. prove, in LP, thequotient rule in the theory of DifferentialRing)� Provide well de�ned primitives and onditions for use atthe interfae level� Highlight areas in whih omputational maths di�ersfrom abstrat maths� Can be used as a formal basis for other CASimplementations
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Formal Methods for Extensions to CAS Conlusions

Interfae Spei�ation
Larh/Aldor� Formal notation for desribing AXIOM/Aldor behaviour� Allows Larh annotations to Aldor ode to be reognised� Provides mehanism for generating VCs
VCs� Many disharge automatiallyisIntDomain(PrimeField 5)� Others are more interestingisOdd(Order G : Group) =) isSoluble G� Aid ompiler optimisation and method seletion� VC generation (ideally) happens in the ompiler

Martin Dunstan, Tom Kelsey, Ursula Martin & Steve Linton 14


