
Object Oriented Method for Axiom.

Jean-Louis Boulanger
Laboratoire d'Informatique Fondamentale de Lille

Universite de Lille 1
59 655 Villeneuve d 'ascq Cedex

FRANCE
Mail: boulang~lifl.fr

November 9, 1994

Abstract

Axiom x is a very powerful computer algebra system
which combines two languages paradigms (func-
tional and OOP). Mathematical world is complex
and mathematicien use abstraction to design it.
This paper presents some aspects of the object ori-
ented development in Axiom. The axiom program-
ruing is based on several new tools for object ori-
ented development, it uses two levels of class and
some operations such that coerce, retract or convert
which permit the type evolution. These notions in-
troduce the concept of inulti-view.

® All Objects have a type and the types pro-
vide a hiera,rchy,

® The control structure is message sending.

We present in [5] these notions and their implicaP
tion on programming. But Object Oriented Devel-
opment is the most interesting part of Axiom, and
provides many problems. Because the mixing of two
programming paradigms can not protect all typical
properties. For example, the message sending does
not exist, and user must use function application
which is not equivalent.

Keywords:
Functional Language, Coercion, Object Oriented
Development, Simple and Multiple Inheritance.

1 Introduct ion.

Axiom is a very powerful Computer Algebra Sys-
tem, mixing two programming methods.

1. Functional programming :

® All objects manipulated by a program are
functions (function are first-class objects),

® The control structure is function applica-
tion.

2. Oriented Object Development :

1Axiom (in past SCRATCHPAD II) is a product dis-
tributed by the NAG society and developed in past by IBM.

2 Functional programming.

Many aspects of functional programming can be
found in literature see for examples [8], [9] and [10].
For Axiom, we can find some information in [4],
[12], [14] and [17].

The next figure describes some Axiom functions
in interpreting mode. This definition introduces the
parametric polymorphism. These functions are also
called generic functions.

fib I == 1

fib 2 == 1

fib n == fib(n-l) + fib(n-2)

ProduitCart (x,y)==

[[a,b] for a in x for b in y]

reduce(x,f, a) ==

if x=nil

then a -- Reduction of list.

else f (first (x), reduce (rest (x) ,f, a))

33 ACM SIGPLAN Notices, Vohane 30, No. 2, February 1995

sum(l) = =

reduce (1 , (x , y) + - > x + y , 0)
p r o d u c t (l) == reduce (1 , (x , y) + - > x * y , 1)

The mixing of two paradigms introduces new no-
tions in interpretation,

® All objects have a type, but user can miss the
type,

• User can define transformation operation on
type that interpreter can use to define type of
object, (this point is more described in [5] and
[13].) See 2.1.

• The message sending does not exist, the inter-
preter must choose the operation to use.

Def in i t ion 2.1 The user can define two type trans-
formation operations:

.

.

.

Coerce : The coercion is an implicit function
that the interpreter can used by the interpreter
when necessary.

Convert : The conversion is an explicit func-
tion with explicit use.

Retract : The basic type can be degenerate to
another type.

The Axiom type transformation have similarity
with the constructor notion in C++.

loop
read_entry()
type_eval entry()
print_entry()

end loop

The type inference in Axiom is more complex than
in ML. In fact ML can not support user's converts
and provide some basic coerce (example Integer to
Real or Character to String). In Axiom, coercion
is a kind of potymorphism. The interpreter loop of
Axiom defines a step of typing.

f Parametric Universal Inclusion
Polymorphism = Overloading

Adhoc Coercion

This figure is extracted from [6] and presents the
different polymorphism forms. Axiom provides all
potymorphism forms.

34

3 Oriented Object Deve lopment .

3.1 I n t r o d u c t i o n .

In Axiom, all objects have a type~ and all objects
are functions, tile interesting question is "What is
a type?". In this context, a type is the mode map
of function, which is an extended notion of map.
In type theory, many schools exist, and Axiom uses
the next notions:

1. The Categories are the abstract types or type
specification,

2. The Domains are class or type implementation,

3. The Packages are functions collections.

Category and Domain are types and are defined
by a mode map. In fact, the type definition is equiv-
alent to the function definition. Some interesting
problem reside in What is a Coercion? (see Section
3.5) and in how to define it.

3.2 B a s i c P r i n c i p l e s .

Mathematician constructs many abstractions, to
control the mathematics world. These abstractions
are based on two notions :

• The mathematical structure (Monoid, Group,

Ring and Field),

• The mathematical object (Real, Complex, Ma-
trix, or Z2).

3.2.1 T h e p a r a d i g m of th is p r o g r a m m i n g .

All new Axiom modules 2:

• are created by inheritance, this provides two
forms of polymorphism (overloading and inclu-
sion)

• can use genericity by parametrization of mod-
ule by variables or by functions,

® can be conditioned by the type of parameters,

2Module includes Category, Domain and Package.

® provide some constructor such that coerce, con-
vert or retract which initialize and output 3
them on screen.

The first three principles are known in all Object
Oriented Languages but the last is a generalization
of conversion notion (see definition 2.1). The con-
version notion is a very powerful tool.

3.2.2 C a t e g o r y o r a b s t r a c t t y p e .

M a t h e m a t i c a l p o i n t o f v i e w :

a n

I n A x i o m :

op (o) ~o~sps o,c ~i op * i a t i v e (*)

op (o)

a n op (*) s " s • ha all i n v e r e

~o + P
a s s o c i a t i v e (+)

~ o p +
+ h a s an u n i t

d i a n J

o p +
+ ha * a n i n v e r s e

Figure 1: An extract of basic hierarchy.

Mathematical structures are defined by

® The set of operations ,

® The set of axiom that operations must verify.

This definition represents the specification that
use lsome languages to generate proof and code (see
OBJ, VDM or larch). In Axiom, the set of axioms

gives many information:

T h e f i rs t p r o b l e m : This introduces some dif-
ferences with mathematics example you nmst break
inheritance tree for define Group and Abelian Group
(See figure 1). But this problem is general to pro-
gramming languages. You can' t give the next defi-

nition :

1. (Z, +), (Z, *), (Q, +) and (~ , *)
are all semigroups.

2. (Z , -) , (Z , ÷) and (Q , -) are not semigroups.

1. a set of links with other mathematical struc-

tures,

2. a set of default implementations,

3. a set of constraints on the behavior of opera-

tions.

D e f i n i t i o n 3.1 We call (S,o) a semigroup

1. o is closed on S,

2. foraUx,y, z e S , (x o y) o z = x o (v o z)
(o is associatif).

Axiom provides a notion of properties tha t the
operation must verify. They are introduced by op-
erator associative(.) ,commutative(.) , These op-
erators are just a mark with no verification.

D e f i n i t i o n 3.2 A ring R is an object with two op-

erations + et • that respect

1. (R ,+) is an abelian group,

2. (R,*) is a semigroup,

3. f o r a l l a , b, cE R , (a + b) * c = a * c + b * c and
c , (a + b) = c , a + c , b

)abb c a t e g o r y ABELGRP AbelianGroup

AbelianGroup() : Category ==
AbelianMonoid with
..... : $ -> $

..... : ($,$) -> $

unitsKnown

add
x:$ - y :$ == x+(-y)

This definition is true for all function that verify
the associativity. But in programming, you must
give the actual name of function and you can't

change it.

)abbrev RING Ring
Ring():Category==Join(SemiGrp,AbelianGroup)

)abbrev COMRING CommutativeRing
CommutativeRing():Category = = Ring with

commutative("*")

In the definition of Ring, the name of operations is
a convention and I can say JR, +, *] is a ring or just

R is a ring.

Figure 2 is an effective construction of some cat-
egories and introduces some new notions as

3The output is managed by the OutputForm domain:

35

a module.

:$->R

)abb MODULE Module

Module(R:CommutativeRing):Category ==

BiModule(R,R) add

if not(R is $) then x:$*r:R == r*x

. : ($, $) -

= : ($, $) - > $

,$)- >$

In this example, the parameter is used for condi-
tioning the default implelnentation.

3.2.3 D o m a i n or c o n c r e t e t y p e .

l:Constazlt -- >$ im~tsKnown The computational objects are defined by 0:Constant- >$

>$

~ti;~)mmutative(.)

Figure 2: Inheritance for Ring.

® The definition of a category introduces simple
and multiple inheritance. We call this inheri-
tance tree Abstract Hierarchy.

* The definition of Monoid introduces the notion
of identity e. In Axiom, we use property and
define constant name.

The definition of Group introduces the exis-
tence of an inverse for all elements of group.
This is coded by a definition of the -a opera-
tor. This definition introduces an implementa-
tion by default for a-b operator.

The self reference are provided by the operator
$.

Ring defined in figure 2 use some basic types as
Type, Coercible To and SetCategory which are very
small but provide reusability and more generality of
code. It's very important to use basic hierarchy for
a good code evolution.

Attributes and parameter can be use for condi-
tioning the behavior or /and the implementation of

* A Category which belong to,

. The set of values,

* The set of operations on values,

® The set of links with mathematical structures.

Some mathematical objects are not structure rep-
resentation but basic object of mathematics (exam-
ple Real, Complex or Matrix). I present a Domain
called Sturm, which provide the respect of math-
ematical properties of Sturm sequence. You find
more information about Sturm sequence in [3]. The
principal results are :

For all polynomial P E _~[X], we can construct
the Sturm sequence S = (fl , .., fk).

We called Variation of sequence S in the point
x, the number of changes of sign in S(x), de-
noted V(S(x)).

We define the number of real roots of poly-
nomial P generator of Sturm sequence S on
interval]a,b] by V (S (a)) - Y(S(b)) .

It exists a Rational bound for real root of poly-
nomial P.

Localization of real root of polynomial P is con-
structed by computation of variation of Sturm
sequence on interval.

This definition gives :

1. Set of Values=List UPolynomial(R,X).

36

2. Set of local operations =

® coerce : Polynomial(R) - > $,

• Bound : $ - > Fraction Integer,

® Variation : ($,R) - > Integer,
C =

• NumberOfRoot : ($,R,R) - > NonNega-
tiveInteger.

3. Set of links = SetCategory

The domain D S T U R M belong to the category

c o e r c e

c o e r c e

V a r i a t i o n
B o u n d

N b r R o o t l n

N b r R o o t

R o o t l n

A l l R o o t

: $ - > OF
: ($, $) - - > B o o l e a n

UP - > $
($, R N) - > I n t e g e r
$ - > R N
($, R N , R N) - > I n t e g e r

$ - > I n t e g e r

($, R N , R N) - > L i s t L i s t R N

$ - > L i s t L i s t R N

)abbrev domain STURM DomainSturm

DomainSturm(S:Symbol,

R:OrderedRing):Public==Imple where

UP ==> UnivariatePolynomial(S,R)

PaN ==> Fraction R

0F ==> 0utputForm

Public ==> SetCategory with

c o e r c e : UP - > $

V a r i a t i o n : ($, R N) - > I n t e g e r

B o u n d : $ - > RN

NbrRootIn : ($,RN,RN) -> Integer

NbrRoot : $ -> Integer

RootIn : ($,RN,RN) -> List(List(RN))

AllRoot : $ -> List(List(RN))

Imple ==> add

import PackageDIY -- Import some operations

Rep := List UP

-- Exported Functions.

. ° °

coerce(p:$):OF == coerce(p)$Rep

NbrRoot (p:$) Number of real roots.

M :RN := Bound p

Variation(p,-M) - Variation(p,M)

AllRoot (s) Extraction of all roots.

M := Bound s
nb := Variation(s,-M) - Variation(s,M)

nb=O => []

nb=l => [[-M,M]]
concat(RootIn(s,-M,0),RootIn(s,O,M))

This example introduces the notion of specifica-
tion inheri tance in Domain, this inheritance tree is
called Add hierarchy. A domain describes an imple-
mentat ion of a particular category, implementation
introduces a representation of an object. You can
use an existent domain to represent the object, it's
a simple inheritance that is called Implementation

hierarchy.

In Domain called DSturm, the word Rep appear
for introducing the representation (generally called
state). But in function coerce it explicit the type co-
ercion (coerce $ to OF is equivalent to coerce Rep to
OF with Rep which is a List). In design of module,
one on the main problem resides in type parameter
choice which provides some compile errors (a type

doesn't provide a function).

If you want construct a new domain Domain-
SturmBis which optimize some operation or change
behavior you can't write :

)abb DSTURMB DomainSturmBis

DomainSturmBis(S:Symbol,R:OrderedRing):

Public == Private where

Public ==> DomainSturm(S,R)

Private ==> DomainSturm(S,R) add

coerce 1 ==

The first principle of paradigm is that all domain
belongs to a category, not to a domain. You must
construct a Sturm Category which defines the cat-

egory C.

And the principle of black box doesn' t accept ac-
cess to inherited representation. The redefinition of
coerce operation uses the representation, you rein-
troduce this.

)abb DSTURMB DomainSturmBis

DomainSturmBis(S:Symbol,R:OrderedRing) :

Public == Private where

UP ==> UnivariatePolynomial(S,R)

Public ==> CategorySturm(S,R)

Private ==> DomainSturm(S,R) add

Rep := List(UP) ++ For using the representation.

coerce 1 ==

In this case, all functions of DomainSturm are in-
herited and coerce are redefine.

3.2.4 Representation of object.

In private part of domain, the word Rep introduce
the representation of computat ional object . This
representation can use all domains known by the
system. This representation can be recursive. Some
examples of very interesting implementat ion of re-
cursifs types are provide by polynomial commuta t i f

or not (see [11]).

37

SparseMultivariatePolynomial(R : Ring,

VARSET : 0rderedSet):

C == T where

C -~-> MPolyCat(VARSET,R)

T ==> add
-- Representation.

D := SparseUnivariatePolynomial($)

YPoly := Record(v:VARSET,ts:D)

Rep := Union(R,VPOLY)

-- Definitions

3.2.5 Package .

Axiom provides a third module the Package, which
is function collections. Packages define some com-
plementary behavior for a type, some transforma-
tions from type A to type B or some user's func-
tions.

In implementation of Sturm domain, I use annex
fimction such that erem : (UP, UP) - > UP which
provides the pseudo- remainder of two univariates
polynomiMs. This functions is defined in general
package called PackageDiv listed in next figure.

)abbrev package PDIV PackageDIV
PackageDIV (S:Symbol, R:0rderedRing) :

Publ ic == Imple where
UP ==> UnivariatePolynomial(S,R

LC ==> leadingCoefficient

Public ==> with
erem:(UP,UP)->UP --rem of euclidian division.

Imple ==> add

erem (p,q) = =

res:UP := p

while degree(res)>=degree(q) repeat
deg := (degree(res,s)-degree(q,s))

pretend NNI -- H00PS

res := res*LC(q) - monomial(LC(res),deg)*q

res

Package PackageDIV introduces a new problem
generated by strong typing. In fact for all polyno-
mial the degree is a NNI 4 but in line with comment
HOOPS, I subtract a NNI to a NNI and Integer can
obtain an Integer and not a NNL But the program-
met known the type of variable deg which is always
a NNI. It uses the pretend operator to force the
type of variable deg. The type forcing is different to
coercion and can provide running error.

)package ABST Abstract

Abstract (R : SetCategory ,

4NNI is the abbreviate of NonNegativelnteger type.

vide? : R -> Boolean,

Sivide : R -> R,

compose :(R,R) -> R,

first : R -> R,

rest : R -> R):

public==private where
public ==> with

Abstract : R -> R

private ==> add

Abstract(entity) ==

if vide?(entity)

then Sivide(entity)

else compose(first(entity),
Abstract(rest(entity)))

The package presented in figure allows the con-
struction of a generic function 5 which correctly in-
stantiated, generates the factorial function or re-
copy of a list.

3.3 T h e w o r l d o f p o i n t s .

In this section, I construct a hierarchy for point
manipulation.

T h e spec i f i cat ion : Next figure introduces an
example of a point hierarchy. I use this graph as
a specification for my world of points.

~Point Mobile~ (CPoint C o,ored~.

\ /
(CPoint Colo~edMobi~

/ \
i Poiotoo,o.od2 i oin,Mobilo2

\ /
I oi°tco,o.odMobi,o DI

This example is simple but introduces all notions
of Object Oriented Programming in Axiom.

Some Categor ie s : To respect the principle of
abstraction and the programming method, the be-
havior of point is define by

)abb category CP2D CatPoint2D

CatPoint2D(R:AbelianGroup):Category ==

SetCategory with
coerce : L i s t (R) ' > $ ++For c o n s t r u c t a p o i n t ,
D : ($,$) ->R ++Distance between 2 points

SThe function of example is presented in [1] page 105-107.

38

In behavior, I can't define the access to coor-
dinate, because it depends to the representation
(Cartesian (X,Y) or Polar (p, 0)). To construct a
point, I define a coercion with translate a List(R)
into CatPoint2D(R), the coercion have always one
parameter . But the next definition is also correct.

)abb category CP2DB CatPoint2DBis

CatPoint2DBis(R:AbelianGroup):Category==

SetCategory with

Init : (R,R) -> $

D : ($,$) -> R ++Distance between 2 points

In this version, the object creation is managed by
user and the system can' t generate automaticMly
this type of object. This version doesn't preserve
the introduced paradigm. This technique is similar
to constructor define in C + + language.

)abb category CP2DC CatPoint2DColored

CatPoint2DColored(R :AbelianGroup,

COLOR:SetCategory):Category==

CatPoint2D(R) with

InitColor : ($,COLOR) -> $

C : $ -> COLOR ++For COLOR access.

In this type, I add a function InitColor because
the type R and COLOR are different and perhaps
incompatible.

)abb category CP2DM CatPoint2DMobile

CatPoint2DMobile(R:AbelianGroup):Category ==

CatPoint2D(R) with

Translate : ($,R,R) ->$
)abb category CP2DMC CatPoint2DMobileColored

CatPoint2DMobileColored(R:AbelianGroup,

COLOR:SetCategory):Category==

Join(Catpoint2DColored(R,COLOR),

CatPoint2DMobile(R))

S o m e D o m a i n s : We define some domains which
give an implementat ion of point objects. The do-
main called Point2D describes an implementation
of cartesian point in two dimensions space.

)abb domain P2D Point2D

Point2D(R:AbelianGroup):Specif==Imple where

Specif ==> CatPoint2D(R) with

X : $ -> R ++ For access to X coordinate.

Y : $ -> R ++ For access to Y coordinate.

Imple ==>

Rep := Record(x:R,y:R)
X pt == pt.x

Y pt == pt.y

coerce pt ==

print(p.x)

print(p.y)
coerce 1 == [first 1 ,first rest I]

D(pI,p2) == ?????

Domain Point2D is an implementation of the ca-
tegory CatPoint2D and provides a cartesian repre-
sentation of point, I add at behavior two methods
for coordinate access because in Axiom the type are
black-box.

)abb domain PM2D PointMobile2D

PointMobile2D(R:AbelianGroup) :

Specif == Imple where

Specif ==> CatPoint2dMobile(R)

Imple ==> Point2D(R) add

Translate(pt,xx,yy)==[X(pt)+xx,Y(pt)+yy]::$

For the domMn PointColored2D, I change the re-
presentation because I add tile property Color.

)abb domain PC2D PointColored2D

PointColored2D(R:AbelianGroup,COLOR:SetCategory):

Specif == Imple where

Specif ==> CatPoint2DColored (R,COLOR)

OF ==> OutputForm

Imple ==> add

Rep := Record(x:R,y:R,c:COLOR)

X pt == pt.x

Y pt == pt.y

coerce(pt:$) == hconcat(X(pt)::OF,

hconcat(hconcat("",Y(pt)::OF),

hconcat("",pt.c::OF)))

coerce i == [1.1,1.2,0]

-- List are indexed structur.

InitColor(pt,co) == pt.c:=co

pt

C pt == pt.c

In axiom, when you redefine a type you must re-
define functions associated to the type or inherited
methods from another domain. In fact, if you define
a type with the constructor Record some problems
appear, because axiom generates Lisp and in Lisp
the Record have different coding according to the
number and the length of fields. And Axiom opti-
mizes field access at compile-time.

)abb PCM2D PointColoredMobile2D

PointColoredMobile2D(R: AbelianGroup,

COLOR : SetCategory) :

Specif == Imple where

Specif ==> CatPoint2DMobileColored(R,COLOR)

Imple ==> PointColored2D(R,COLOR) add

Translate(pt,xx,yy) ==

InitColor([X(pt)+xx,Y(pt)+yy],C(pt))

3.4 Tree inher i tance .

In section 3.2, we define some notions then we in-
troduce three inheritances trees.

39

® Abstract hierarchy (for categories),

® Add hierarchy (for domains),

* Implementation hierarchy (simple inheritance).

We present now the look up algorithm of inheri-
tance trees that it is presented in [15]. We don't
criticize it efficiency, the object oriented language
hterature provides many works which analyze this
subject (see by example [16] and [7]).

The research of operations is done in the following
order :

1. implementation hierarchy, (simple inheritance)

2. add hierarchy, (multiple inheritance with the
respect of the enumeration order)

3. abstract hierarchy. (multiple inheritance)

3.5 S e n s e s of c o e r c e .

3.5.1 C h a n g i n g the perspective.

H1 H2

(~) Coerce ~ (~)
Some coerce operations define a perspective

changing of the object. Perspective describes a view
of object and an evolution. An example of a per-
spective changing is describes in figure 3.

Category L e ~

D°maiTt. .d

(PointPolar)
RHO : $- > Real
THETA : $- > Real

CatPoint toerce : List(Real) - > $

C°erCe~car tes ia9

X : $ - > Real
Y : $ - > Real
coerce : $- > P o i n t P o l a r

Figure 3: Different view of Point.

Using the definitions of the figure 3, I purpose
some use of coerce polymorphism.

pointC : PointCartesian

pointC := [I,5] -- The power of coercion.

--Coercion implicit

pointP :PoingPolar := pointC

--Execute a function of PCartesian on PPolar

X(pointP)

3.5.2 P r o j e c t i o n or E x t e n s i o n .

Some objects are constructed by Extension of
Object Representation or by Projection of Ob-
ject Representation. The user must define co-
erce operation to transform the object if possible.

Coerce
(Projection)

Coerce
(Changing Rep or
Extending Rep)

M2)

In Object Oriented Languages, the object is just
described by a hnk is_a but in Axiom, you can trans-
form the representation of an object by extension
or projection. You add or remove some properties
of object representation. This operation exists be-
cause the introduction of word R e p in Axiom syn-
tax introduces the possibihty to change the object
representation (see the domain PointColored2D).

Coerce:2D-~

I Point2D
X,Y

1
Point3D

X,Y,Z

Coerce:3~D >2D

I_J
It's very important to define coercions which don't

change the object structure and preserve informa-
tion. The figure defines two coercions but the pro-
jection one is valid but the extending one have many
choices for the third coordinates. Another example
is done by Integer and Real, all Integer can be co-
erce in Real but Real are truncate in Integer. In [2],
you find a tittle study of coerce in compiler context.
In fact, a true problem resides on the definition of
coerce, in compiler this notion is linked to the notion
of type equivalency.

40

4 Conc lus ions [7]

Axiom is a functional language with object oriented
development which models the mathematics world.
Axiom provides some very interesting tools but the [8]
development and debugging of a big application is
very difficult. The polymorphism provides a good
and an effective reusability of code. [9]

The Object Oriented Programming of Axiom pro-
vides two forms of inheritance,

1. the structurM inheritance which defines
representation of objects.

the

2. the behavior inheritafice.

Some objects have many representations and one
global behavior. This fact introduces the notion
of view and use coercion for view evolution. The
choice of coercion is very important and can provide
some errors. Development of application in Axiom,
respect Mathematical structure and general defini-
tion, theorem or lemma.

References

[1]

[2]

[3]

[4]

[5]

Habib Abdulrab. De Common Lisp h la pro-
grammation objet. HERMES, 1990.

Alfred Aho, Ravi Sethi, and Jeffrey Ullman.
Compilers. Addison-Wesley Publishing Com-
pagny, 1986.

Riccardo Benedetti and Jean-Jacques Risler.
Real algebraic and semi-algebraic sets. Her-
mann, ~diteurs des sciences et des arts, 1992.

Jean-Louis Boulanger. Etude de la compilation
de scratchpad 2. Rapport de DEA Universite
de lille 1, Septembre 1991.

Jean-Louis Boulanger. Axiom, langage fonc-
tionnel ~ d6veloppement oh jet. IT 255, Octo-
bre 1993.

Luca Cardelli and Peter Wegner. On under-
standing types, data abstraction, and polymor-
phism. Computer Survey, December 1985.

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Roland Ducournau and Michel Habib. La mul-
tiplicit~ de l'h~ritage dans les tangages 5. ob-
jets. T.S.I Technique et Science Informatiques,
1989.

Peter Henderson. Functional Programming.
Prentice Hall International, 1985.

C.Hankin H.Glaser and D.Till. Principes de
Programmation Fonctionnelle. Masson, 1987.

S.L Peyton Jones. Mise en oeuvre des langages
fonctionnels de progmmmation. Masson, Pren-
tice HM1, 1990.

Michel Petitot. Types r6cursifs en scratchpad,
application aux polyn6mes non commutatifs.
LIFL, 1990.

R.S Sutor R.D Jenk. AXIOM. NAG, 1992.

R.S Sutor R.D Jenks. The type inference and
coercion facilities. ACM, July 1987.

S.M Watt R.D Jenks, R.S Sutor. Scratchpad
2: an abstract datatype system for mathemati-
cal computation. Computer Science, November
1986.

S.M Watt R.D Jenks, R.S Sutor. Scratchpad
2 type system : Domains et subdomains. IBM
Internal Report, 1987.

J.C. Royer. Un modhle pour l'h6ritage multi-
ple. BIGRE No 70, Septembre 1990.

R.S Sutor. A guide to programming in the
scratchpad 2 interpreter. IBM Manual, March
1988.

