SCRATCHPAD/1
AN INTERACTIVE FACILITY FOR SYMBOLIC MATHEMATICS

J. H, Griesmer %
R, D, Jenks
IBM Thomas J, Watson Research Center

Yorktown Heights, N, Y,

Summary. The SCRATCHPAD/] system is de-
signed to provide an interactive symbolic computational
facility for the mathematician user, The system
features a user language designed to capture the style
and succinctness of mathematical notation, together
with a facility for conveniently introducing new nota-
tions into the language, A comprehensive system
library incorporates symbolic capabilities provided by
such systems as SIN, MATHLAB, and REDUCE,

0. INTRODUCTION

The major goal of the SCRATCHPAD project has
been the design and implementation of a symbolic
mathematics facility which provides a mathematician
user with a powerful algebraic capability, and which at
the same time is as convenient to use as his pencil and
paper. To achieve this goal, principal effort has been
expended in four areas:

(i) The implementation of an experimental LISP
system for both interactive and batch use permitting
simultaneous access to a large number of LISP-based
algebraic facilities;

(ii) the building of a library of symbolic facilities
taking maximum advantage of developments in sym -
bolic computations originating elsewhere;

(iii) the design and implementation of an exten-
sible user language enabling a user to state hisproblem
using notations approaching that of conventional mathe-
matics;

(iv) the development of a flexible evaluator giving
the user maximum control over the substitution and
simplification mechanisms of the system,

SCRATCHPAD has been implemented in the LISP
programming language using an experimental System/
360 LISP system. The major features of this LISP
system that enhance its capability for symbolic and
algebraic computations are provisions for unlimited
precision integer arithmetic and for accessing a siz-
able number of LISP compiled and assembled pro-
grams,

This latter capability has enabled significant por-
tions of the following systems to be incorporated into
the library so as to be simultaneously available to the
SCRATCHPAD user:

% on leave during 1970-71 at the University of
California at Berkeley,

42

10598

MATHLAB [4, 5, 16] - Carl Engelman,
MITRE Corporation

REDUCE [8 - 11] - Anthony Hearn, Stanford
University and the University of Utah

On-line Simplification System [14, 15] - Knut
Korsvold, Stanford University and the
Norwegian Defence Research Estab-
lishment

Symbolic Mathematical Laboratory [17] -
William Martin, MIT

Symbolic INtegration (SIN) [19] -
Joel Moses, MIT.

An extensible language approach was adopted in
the design of the SCRATCHPAD user language, The
initial language presented to each user is called the
"base language' and contains a set of basic syntactic
constructs described by notations resembling those in
conventional mathematics. These basic constructs
may then be extended by an individual user in order
that he may tailor the system to his particular needs,

The objectives in the design and implementation
of the SCRATCHPAD evaluator were to achieve effi-
ciency comparable to that of REDUCE?Z2 yet to provide
the generality and understandability of the FAMOUS
system [7]. The evaluator design is built upon the
concept of '"replacement rules' and provides a basis
for the manipulation of not only algebraic expressions
but also inequalities and logical expressions,

The remainder of this paper is divided into four
sections plus an appendix, Section 1 presents an over-
view of the system organization and discusses its
library facilities and current input/output capabilities,
The section concludes with a capsule view of the de-
sign and implementation of the evaluator,

Section 2, the main section in the paper, sketches
the syntax and semantics of the base language, Other
topics include user control of the evaluator and the
manipulation of expressions,

Section 3 describes the design of the syntax exten-
sion feature and gives a brier description of the under-~
lying facilities used for its implementation, The final
section describes some future directions of the project.
The appendix contains a sample conversation of the
SCRATCHPAD/1 language in the EBCDIC alphabet, and
includes a complete syntactic descriptionof the base
language.

1, SYSTEM ORGANIZATION ANDCAPABILITIES

A user session with SCRATCHPAD consists of the
sequential processing of user commands by the
SCRATCHPAD supervisor, During such processing,
four major component parts of the system are util~
ized:

an input translator to convert input strings into
a form suitable for interpretation;

an output translator to convert expressions in an
internal form to a two-dimensional format
for output to the user;

a library accessible by the evaluator containing
the bulk of the special purpose algebraic
manipulation functions; and, :

an evaluator to carry out the appropriate action
indicated by the command,

E xpressions

in two dimensions Commands
USER
OUTPUT INPUT
TRANSLATOR({S} TRANSLATOR
EVALUATOR
LIBRARY

Figure 1. System Overview

(i} The input translator, User commands in the
source language of SCRATCHPAD are accepted by the
input translator and translated into a form suitable
for interpretation by the evaluator. The current mode
of input for interactive use is via an alphanumeric
keyboard, either on an IBM 2741 terminal or on an
IBM 2250 graphic “isplay console connected to an IBM
1130 computer,

The SCRATCHPAD language described in Section 2
permits objects with associated two-dimensional
graphics similar to that in customary mathematics,

e. g.

i
x; (£) Y3,k Z g
For keyboard input all two-dimensional forms are
linearized in a straight forward manner(Figure 2).

(ii) The output translator., A modified CHARYBDIS
(Jonathan Millen, MITRE) [18] program producesline-
by=~line character output to form a two-dimensional
image of a mathematical expression, The CHARYBDIS
output translator may be used by a person accessing
the system from either the 2741 terminal or the
1130/2250 display system.

The Picture Compiler (William Martin, MIT) [17] is
also available with the 1130/2250 system; this system

creates 2250 display commands, in the form of vector
strokes and branches to character subroutines, to
produce a two-dimensional display of mathematical
expressions, The revision of the Picture Compiler
for use in SCRATCHPAD was effected with the con-
sulting help of Professor Martin and yielded an im-
proved facility for breaking multiline expressions,

(iii) The library of SCRATCHPAD/1, The follow-
ing symbolic capabilities, most of which were origin-
ally written for other systems, are currently available
in SCRATCHPAD/1:

SIMPLIFICATION (R, M, K, S, N)
POLYNOMIAL GREATEST COMMON DIVISOR (R)
DIFFERENTIATION (R, N)
INTEGRATION (M, S)
POLYNOMIAL FACTORIZATION (M)
LAPLACE TRANSFORMS (M, K)
INVERSE LAPLACE TRANSFORMS (M)
SOLUTION OF LINEAR DIFFERENTIAL
EQUATIONS (M, K)
MATRIX OPERATIONS (R, N)
SOLUTION OF SYSTEMS OF LINEAR
EQUATIONS (N)

The letters "R, M, K, S'" refer, respectively to
REDUCE, MATHLAB, Korsvold, and SIN, These
facilities are described in the documentation of the
parent systems, The letter "N' refers to newly
created facilities,

The following is indicative of the variety of problems
for which the library has been utilized:

(a) generation and study of polynomials arising in
graph theory and sorting;

(b) inversion of transition matrices resulting
from a problem in data compression;

(c) symbolic differentiation and substitution re-
quired ina study of wave propagation in an elastic media;

(d) symbolic triple integrations arising in queuing
theory;

(e) solution of an eight-dimensional system of
linear symbolic equations arising from research on
optimal difference formulae;

(f) investigation of subdeterminants derived from
transformations applied to systems of nonlinear or-
dinary differential equations,

(iv) The SCRATCHPAD evaluator. The design
of the evaluator, which is enlarged upon in Section 2,
is based on the following concepts:

Replacement rules, created by user commands,
are name-value relationships between such entities
as variables (or, functions) and expressions;

The environment denotes the set of all replace-
ment rules in effect at a particular instant in time;

Evaluation consists of a systematic transforma-
tion of an entity such as an expréssion, as governed
by the environment,

These concepts provide a foundation for both the
manipulation of expressions and the definition of
functions and variables, The manipulation of expres-
sions in SCRATCHPAD consists of their evaluation in
a changing environment, as when replacement rules
for variables affecting expansion, factoring, etc. are

43

altered. On the other hand, definitions of functions
are formed by combining replacement rules into
LISP-~like conditional expressions,

Two representations of expressions are handled
by the evaluator, The "external form'" (LISP prefix
form) is used to communicate with the various sub-
systems in the library and to represent expressions
in replacement rules, In addition, expressions which
are output to the user are automatically labeled and
saved in an external form which mirrors the output
format,

All algebraic computations are carried out in
"internal form", the 'standard form'of REDUCE2, in
order to gain efficiency in both speed and storage. On
evaluation, a substitution obtained from a replacement
rule is converted from external to internal form. In
the case of a substitution for a variable, the internal
form is stored in an "already-simplified' cell associ-
ated with the variable, The evaluator maintains a
representation of a directed graph describing the de-
pendency of variables and forms on one another in
order that already-simplified forms may be used as
long as possible,

Rules for
linearization

Two-dimensional

format Input format

x(u, v) x(u, v} Functional arguments
are separated by
commas and enclosed
in parentheses

x x[1] Scripts (if any) are
enclosed in brackets
with subscripts given
first

x, . x[1, j] Multiple scripts at
the same location are
separated by commas
x[i, j;ki;p] Superscripts, pre-
superscripts, andpre
subscripts follow sub-
scripts in that order
with a semicolon
used to separate each
group from the next
L(t)

4 x[t; 5] (¢)

Functional arguments
follow scripts

x, x[i[k[1]]] Scripting may occur
k to any depth

Figure 2, Examples of FORMs and

rules for linearization.

2, THE SCRATCHPAD BASE LANGUAGE

The SCRATCHPAD base language is designed
primarily for interactive use by a mathematician un-
skilled as a programmer, In particular, it is not a
programming language or a language for the specifi-
cation of algorithms,

For its purpose, the language features the desir-
able characteristics of simplicity, uniformity, and
succinctness. The language is experimental and in
many ways unconventional, In its interactive design,
it resembles APL [6]. Syntactically, it combines a
natural style of notations from conventional mathe-
matics with features derived from JOSS [21] and
SYMBAL [3]. The semantic model bears closest re-
semblance to that in FAMOUS, The language has
wide applicability; its design currently provides a
framework for manipulation of all of the following:

(a) finite and infinite sums, products, and
sequences

(b) relations such as equations and inequalities

(c} arbitrarily indexed variables, functions, and
operators

(d) sets

(e} arrays of arbitrary dimension,

The language is described in the following nine
sections, Section 2,1 presents the hierarchy of
syntactic constructs ending with COMMAND, the name
given to each distinct message issued from the user
to the system, Sections 2.2 and 2,3 elaborate on these
constructs and present an intuitive meaning of a
COMMAND as that of an '"assertion', In Section 2, 4,
the notion of an assertion is made more precise bythe
description of the concepts of replacement rule, en-
vironment, and evaluation, Sections 2,5 through 2,8
describe the manipulation of expressions, iteration of
COMMANDS, and user control over evaluation,
Section 2, 9 describes a procedural language facility
which enables symbolic subroutines to be created,

2.1 Syntactic Constructs

QOur purpose here is to present an overview of the
syntax of the language, not to discuss inessential
syntactic details, Accordingly, we will present all
examples in their two~dimensional format using an
expanded character set, For actual input to the
system, the syntactic constructs are one-dimensional
strings currently using the EBCDIC alphabet as
described in Table I in the appendix,

PRIMITIVEs are the building blocks of the langu~
age; they are of five types:

INTEGERSs 31 1234567890987654321
VARIABLEs x 1

FORMs (Figure 2) x(i) %

VECTORSs {202} {{t.2} {L2}}

SETs {4 xn=1} {i| xy=18&1> 2}

An OPERATOR~FORM contains one of the four
prefix operators (Figures 3: Z, I, f, 9.

44

two-dimensional
format input format

indefinite integral j‘xi(x) int [x] f(x)

definite integral f}l‘go f{x) int [x=0; 1] f(x)

summation Z::o fi(x) sum [i=0; inf] £[1] (x)
product In :0 fi(u) prod [i=0; inf] £[i](u)

ordinary derivative bxf(x) df [x] £x)

partial derivative 3 flx,y) dffx,y,y] f(x,y)
XYY

1,2
or: 8 yf(x, y) df [x, y; 1,2] fx,y)

Figure 3, Examples of OPERATOR-FORMS

EXPRESSIONs are the strings manipulated by the
user, An EXPRESSION is either a PRIMITIVE, an
OPERATOR~-FORM, or any syntactically allowed com-
bination of PRIMITIVEs, OPERATOR-FORMs, oper-
ators (Figure 4), parentheses, and quote marks, e, g.

n i
_h__ %9 u
fact{i) x

x+ y*(1 - ‘u(t)'z)l/2 }

~i=1

Ellipses (.,.) may also be used in sums, prod-
ucts, and sequences to indicate missing terms, e, g.
W2k, 40 x) {1,2,...}

* X, * 00 *x

n
STATEMENTS are the fundamental constructs for
making definitions and declarations. They consist of
(1) a left-part: usuallya VARIABLE or a FORM,;
(2) a relator: >, =, =, <, <,€; and
(3) a right-part: an EXPRESSION, e. g.

fi(x)=x1 x>0 ie {1,2,...}

Boolean operators:
V boolean-or (n-ary)
A boolean-and (n-ary)
= boolean~not (unary)

Relational operators:
<, = =, = > ¢ (binary)
Arithmetic operators:
+ unary plus; n-ary plus
- unary minus; binary minus
. % multiplication (n-ary)
/ division (binary)
) integer-division (binary)
ke exponentiation (binary)

Figure 4, Primitive operators in the system

45

A COMMAND is normally an "assertion'' consist-
ing of one or more STATEMENTSs: a main
STATEMENT optionally followed by one or more of
qualifying STATEMEN Ts with commas separating, e. g.

fi(x)=x1, x>0, ie {1,2,...}

Assertions are always associated with the left-
part of the main statement in the COMMAND, e, g. the
above COMMAND is called an ''assertion on fi(x)".

Other types of COMMANDSs such as "syntax ex-

tension commands' discussed in Section 3 are not
further discussed here,

2,2 The PRIMITIVEs

INTEGERSs

INTEGERSs consist of a string of digitsof arbitrary
length, The numbers used in the SCRATCHPAD lan-
guageare always rational numbers, Numerical calcu-
lations on rational numbers use unlimited precision
integer arithmetic and therefore always remain fully
accurate within the storage limits of the machine,

The INTEGERSs are basic constants in the
SCRATCHPAD language with 1 and 0 denoting the
boolean constants 'true' and '"false'' respectively,
The number 0 also denotes the empty SET and the
empty VECTOR,

VARIABLESs

VARIABLEs serve several purposes, They may
denote user's variables and constants; they may also
be regarded as names for equations, relations, or
sets of objects, In addition, several VARIABLESs
play special roles in the evaluation mechanism
{Section 2, 6).

An assertion on a VARIABLE is used to assign a
range of values to that VARIABLE, e, g.

(ayx>0
(b)y=2

(cyie {1,2,...}
(d) je integers

asserts x is greater than 0
asserts y equals 2

asserts i is a positive integer
asserts j is an arbitrary integer,

An assertion has a global effect, e, g, the asser-
tion '"'x > 0" holds until a subsequent assertion is given
on x, If otherwise undeclared, a variable is under-
stood to range over the set of all EXPRESSIONs, An
assertion on a variable is removed by a statement
with an empty right-part, e, g.

X =

A VARIABLE is treated as a constant (e, g, for
differentiation) if its range is restricted to a single
value, Three ways of asserting that p is a con-
stant are:

(eYp=2 asserts p denotes the constant 2

(f) p = 'p" asserts p denotes itself

(g) p constant also asserts p denotes itself (a
built~in extension to the base
language)

FORMs

The notation f(x) is called a FORM with parameter
x, In general, a FORM may have any combination of
the following five types of parameters: functional
arguments, subscripts, superscripts, pre-super-
scripts, and/or pre-subscripts (Figure 2). Any two
forms which have the same leading variable name and
the same combination of parameter types, are associ-
ated with the same "function descriptor', e, g, all of

£000 £,(1) £,Q0) £0))
refer to the same function descriptor f*(*), and are
independent of the following FORMs:

£0,1) (%, *)
which are associated with

function descriptors:

f0,1 f*’ %

FORMs may be used to represent parameterized
objects, such as (i), f,, log(x), sin(x), etc., Certain
special FORMs however are reserved for directly
accessing the SCRATCHPAD library functions, e, g.
"integrate (u, x)"" may beissued to calculate the indefinie
integral of u with respect to x,

Assertions on FORMs are used to describe
function definitions, e, g.

(h) i(x) = x asserts i(a) = a for all a
(i) h{x, y)=(x>y) asserts h{a,b) = 1 if a>b else 0
ifa=b

The "a'" and "b'" were chosen here arbitrarily to
represent the dummy variables used by the system to
store the above assertions, In SCRATCHPAD/]1,
assertions on FORMSs are restricted to those having
"= as the RELATOR between the FORM and the
EXPRESSION, Thus, for example, the assertion

glx) > f(x)
is not currently allowed,

By convention, the range over which the assertion
on a FORM is valid is indicated by the use of
NUMBERs and VARIABLEs with appropriate pre-
assigned ranges as parameters, In (h) and (i) above,
for example, we have assumed that x and y have unre-
stricted range, As a more illustrative example, given
the assertions '"x > 0" and "i in {1,2,... }™

. i a
(j) fx,x)=x asserts that £ (b,c)=b when
i a : o
b>0, b=c, and a is a positive
integer

The ranges of parameters may also be given by
qualifying statements following the main statement, ¢ g

(k) g(0,x)=x, x> 0 asserts that g(a, b)=b when

a=0 and b>0

Qualifying statements may be regarded as asser-
tions themselves except for one important difference;
qualifying assertions only affect the statements to their
left in the COMMAND in which thev appear. In par-
ticular, the qualifier "x > 0" in COMMAND (k) above
has no effect on the evaluation of x before or after
COMMAND (k) is issued,

Successive assertions on FORMs are '"stacked"
with new assertions given precedence, Through
assertions the user is able to give piecewise defin-
itions of functions:

kix,y)=0, x <y
k(x,y)=1, x>y

asserts k{a,b) = 0 when a <b
asserts k(a,b) = 1 whena >b

and, recursive definitions of functions:

f(0)=1 asserts f(a) = 1 when a=0
f(1)=1+ x asserts f{(a) = 1 + x when a=1
fp)=x*f(p-1)-y*f(p-2), pe {2,3,...}
asserts fla) = x*f(a-1)-y*f{a-2)
when ae {2,3,...}

Assertions may be either selectively removed:
f(0) =
or totally removed:
f(x) = , X =
VECTORSs

VECTORSs serve two general needs: (1) to denote
finite and infinite sequences (Figure 5, Examples 1-6),
and, (2) to denote the mathematical objects of vectors,
matrices, and tensors (Figure 5, Examples 7-10),

The ellipsis ", ..'" may be used between elements
according to rules which will be incompletely de-
scribed here, The sequence denoted by {i,j,...,k}
is i, i+(j=1), i+ 2%(j-i), etc, up to k=i + n¥(j~-i) for
some numeric or symbolic quantity n, The only re-
strictions here are that 1i,j, and k be distinct and that
k-i be some multiple of the step j-i, The sequence
{i,...,k} is understood to have i+1 as its second
member (Examples 2-4), Any number of ellipsis ex-
pressions may be given (Examples 4, 5), Arbitrarily
complicated EXPRESSIONs are allowed in ellipsis ex-
pressions provided they mutually exhibit one linearly
varying quantity, e, g. in the current system, an
ellipsis expression such as that in Example 6 is
recognized whereas one such as

is not,

Sequences with non~linearly varying indices may
be given by use of a function valued subscript, e, g,
if x; denotes the Fibonacci sequence 1,2,3,5,8,,,.
for i=1,2,,.. respectively; the successive elements in

46

Example 6 are then
1 2 3 4 5
1 1 az ’ a3 ’ as 14 a'8 r

Examples 7-10 illustrate how VECTORs are used to
describe vectors and matrices,

a etc,

The elements of VECTORSs are consecutively 'in-
dexed'" normally starting with 1. For example, the
first element of {1,3,12,13,,,.. } is 1, the second
element is 3, and its nth element (n = 3) is 9+n,

It is also possible to give an arbitrary initial in-
dex and to leave VECTOR elements unspecified
(Examples 8-10), Various examples and uses of
VECTORSs are described throughout the appendix (in
particular, see Sections 8 and 11),

Example 1. A sequence of 5 elements:

{u/x, 1+x, -5, 12, p(x)}

Example 2, The sequence of the first five positive
integers:
{1,2,3,4,5} {1,2,...,5} {1,...,5}
Example 3, The infinite sequence of positive integers:

{1,2,...,03} {1,2,.,_} {l,...}

Example 4. The sequence of integers from 1 to k

excluding j:

{1,2,...,j=1,51,...,k}

Example 5. The sequence u/v, -5, the positive
integers exceeding 10, and the negative

integers below -43:

{ufv, -5, 11, 12, ..., o, -44, -45,...}

Example 6, An infinite sequence of multi-indexed
forms (assume i to rangeover {1,2,...}}:
1 2 i
{a .2 ,...} {iza_ }
X’ X, x,
Example 7, A vector of two elements each of which

is a vector of 4 elements, i,e,, amatrix
of 2 "rows'" and 4 'columns':

{{avbvcvd}y {l) -1z, u/vl P}}

Example 8, A vector of length 2n+1, starting index
-n, and all but 0 element unspecified:

{-n:, 0:1, n:}
Example 9;: An infinite vector with initial index -2,

and whose elements with index -2, 5,
13, 15, .., are l; all other elements
are undefined;

{-2:1, 5:1, 13:1, 15:1,,..}
{kil} where k ¢ {-2, 5, 13,15, ...}

Example 10: Three n by n matrices (assume i and
j have been asserted to range over

{1,2,...,n}) (n may be leftunspecified);
{i:{i: }} (all elements unspecified)
{i: {j:i=j}} (unit matrix)

{i: {j:1 /(v j-t) }}

(generalized Hilbert matrix)

Figure 5, Examples of VECTORs

SETs

A SET may be used to make more complicated
assertions on VARIABLEs, e, g.

S={x|x>0&f(x)>0} asserts Sis the set of all x

such that x>0 and f(x)> 0

yin S asserts y>0 & f(y) > 0

Operations on and between SETs such as union,
intersection, and complementation are planned for a
later version of the system, Additional details on
SETs and their evaluation appear in Section 10 of the
appendix, ’

2,3 Expressions and Pattern Matching

47

EXPRESSIONs denote the most general right-part
of a statement, They are built up from the following
hierarchy of constructs: PRIMARY, FACTOR, TERM,
ALGEBRAIC EXPRESSION, and CONDITIONAL EX-

PRESSION (Figure 6).
(1) PRIMARY h fact{i) u(t) a: Hy (1-un)
(2) FACTOR b’ el gt
1.
(3) TERM LU] Ly (1-u(t)2)

fact (i)

'(4) ALGEBRAIC 1’ f(t)

2
EXPRESSION at +bttc

-1, 2
TNy +t % -u(t)”)

(5) CONDITIONAL h‘a: 1(t)

-1 2, .
EXPRESSION —————+t ~ #1-u(t)) if t>0
fact (i)

nla (1)
fact (1)

1

- P
{6) EXPRESSION ¢ Clag-u()d if t > Owhere u(t)=atbtrc

The parts of speech associated
with EXPRESSIONSs, listed in
order of increasing generality

Figure 6.

The most general left-part of a statement cur-
rently handled is a TERM, For example, all of the
following are legitimate statements:

(z+ phi (x)) = psi(z)
sin (x) %#%2 = 1 - cos(x)%*2
tak(btc)Hx3 " =d
ta¥(bkc)*®k3bkx = d%x

Here x and z are assumed to have arbitrary
range, These statements are again assertions but in
this case are placed in the special category called
""pattern matching rules'., Pattern matching rules
are applied independently of other types of assertions
in a separate phase of evaluation (see below).

Quote marks are used to surround phrases which
are to match exactly, In the third example above, a

match will be found in
3 . 2 3
ee. *a{btc) +,,., butnotin ,..+a c (btc) +...

To cause a match in the second case, the assertion
in the fourth example must be used.

With some exceptions, arbitrary EXPRESSIONs
are allowed as parameters in FORMs on the left-hand
side of an assertion, e, g.

flglh(x)), x) =0, x>0
will match any FORM of f(*, %) for which the parameters
have the explicit form "g(h(b))"" and "b'" where b de-
notes any expression which can be shown to be positive
Pattern matching is applied recursively, e, g. given
the assertion:

cos (x + phi {y)) = mu (y)

then the EXPRESSION:
will evaluate to:

"cos (phi (cos(r + phi(s))) + t)"

mu (mu(s))
One restriction is that only binary EXPRESSIONs
in+ and * are allowed: e, g, "glatbtc) = 5" is not

allowed,

2.4 Evaluation and Environment

The meaning of an assertion is embodied in the
notion of a ''replacement rule", e, g,

x = 2 means: ''replace x by 2"
Replacement rules are stored internally with a
VARIABLE or function descriptor referenced in the

left-part of a STATiEMENT. For example, the
COMMAND " (x)=x , x>0, i€ {1,2,..,. }'" creates a
replacement fule for fu4(*) in the form of a 3-tuple:

(= (b>0 & a is a positive integer) b¥%*a)
The general form of a replacement rule is:

(RELATOR CONDITION EXPRESSION)

The RELATOR is the top-level infix operator of the
assertion, The CONDITION part is either empty or
contains a representation of a '"when' phrase describ-
ing conditions on standardized '"dummy parameters'',
The EXPRESSION part corresponds to the right-part
of the assertion and represents a substitution in terms
of these dummy parameters,

The totality of replacement rules which are applic-
able at any one instant in time is called the ''environ-
ment of evaluation'!, At the beginning of a user's
session, VARIABLEs and FORMs have no preassigned
replacement rules and evaluate to themselves, Asthe
session progresses, the user builds the environment
by the introduction of replacement rules through
assertions,

Evaluation of VARIABLEs, FORMs, and
EXPRESSIONs involves their transformation according

48

to the current environment, Evaluation of
VARIABLESs is carried out by recursive examination
of replacement rules, e, g, given the assertions:

X=y, y=2z z=Ww w =23

the value of x is obtained by evaluating y, etc, until
the 2 turns up on evaluation of w, This method of
evaluation thus consists of continuous substitution

until no more substitutions can be made,

The evaluation of FORMs is similar except that
the actual parameters of the FORM are first evaluated,
then substituted into the replacement rules for corre-
sponding dummy variables, Each rule is examined in
turn until one is found for which the "CONDITION"
part is satisfied;: the "EXPRESSION" part of that rule
is then evaluated and returned as a substitution for the
FORM, If no such rule is found, the value ofthe FORM
is taken to be the original FORM with its parameters
evaluated,

The evaluation of EXPRESSIONs is similar to that
of corresponding prefix forms in LISP, For example,
the evaluation of

X+ y+ z

(where x,y, and z may be any syntactically allowed
EXPRESSIONs) consists of evaluating x, y, and z to
obtain values x',y', and z', then applying the system
function, in this case SIMPPLUS, associated with the
infix operator "+ ', The function SIMPPLUScarries
out the symbolic sum of x',y', and z' and applies
certain built-in replacement rules for simplifying the
result, In general, all operators listed in Figure 4
have corresponding system functions which are applied
to the arguments in a similar manner,

The EXPRESSION in the right-part of a COMMAND
is evaluated twice before use: once on input when the
replacement rule is created and then again when the
replacement rule is applied,

An EXPRESSION surrounded with quote marks (')
evaluates to itself; quote marks are used to delay or
inhibit evaluation, e, g. given the assertion y=2,

the creates the for which
statement: replacementrule: on later application:
X=y replace x by 2 x evaluates to 2
x=ty! replace x by y x evaluates to 2
x=ltytt replace x by ‘'y! x evaluates to y

2,5 Manipulation of EXPRESSIONs

Thus far we have shown only how the
SCRATCHPAD language may be used for making defin-
itions and declarations, In this and the followingthree
sections, we will show how the language is also a con-
venient language for manipulation, The key idea
throughout is the following:

EXPRESSIONs are manipulated by their evalua-
tion in a dynamically varying environment of
replacement rules,

A COMMAND consisting of an EXPRESSION stand-
ing alone is evaluated, printed out, and assigned to the
special VARIABLE WS called the "workspace', Thus
the COMMAND

f(x) 1is equivalent to: ws = f(x)
and results in the evaluation of f(x) and the display
and assignment of the result to the workspace, The
contents of the workspace are not affected by other
types of COMMANDs,

All non-trivial EXPRESSIONs entered into the work-
space are given consecutive integer labels beginning
with 1, For example, the above COMMAND might re-
sult in the printout .

(101):

1 1

(+ H(X)
X(1-AX) (1 -X)(1 =~

X (1 - BX)

ax)) G +

All labeled EXPRESSIONs are automatically saved
on secondary storage and may be referenced by the
special FORM WS(n), where "(n)" is a previous label
issued by the system, :

The contents of the workspace may be manipulated
in whole or in part, The variable WS always refers to
the entire workspace, In addition, the user may seled,
set, or modify any subexpression of the workspace
without affecting the remainder of the workspace, For
example, given the expression (101) in the workspace,

‘alter (1,1), med =1
causes the first term, first factor to be evaluated in
the environment with MCD ('""make common denomin-
ator') set to 1; the effect is to rewrite this term witha
common denominator:

(102):

G(X)
X(1-X) (1l - AX)

H(X)
X (1 - BX)

2.6 User Control

We highlight the facilities for user control over the
evaluation mechanism of SCRATCHPAD by describing
the use of flags, special VARIABLEs, the EVMODE
feature, and WHERE-clauses,

Flags and Special VARIABLEs, Flags are
VARIABLEs referenced by the evaluator, Although
no flags have initial values, all have initial meanings,
For example, given no replacement rule for the flag
XPS (expand powers of sums), all powers of sums of
two or more terms are expanded out in full, On the
other hand, given the assertion

XPS n

where n is a positive integer,

m

(a+b+, . .+c) (m > 0)

49

=

is expanded out for m n, With a few exceptions
such as XPS, the flags in SCRATCHPAD are presently
identical to those in REDUCE?,

In addition, certain special VARIABLEs are used
to control the formatting of expressions as in
REDUCE2, e, g,

order={x,z,y} is used to order x ahead of z
‘ ahead of y in the output of
polynomial products

factors={u,v} indicates that powers of uand v
are to.be factored out of ex-
pressions on output

The EVMODE feature, Thus far, we have in fact

‘described only one of the phases of evaluation, namely

the substitution phase, The entire evaluation of an
EXPRESSION normally consists of the application of
five independent phases in a specified order (Figure 7)

Phase

Number Description
1 Simplification with no substitution
2 Simplification with substitution
3 Expansion under flag control
4 Expansion in full
5 Pattern matching (outside/in)
6 Pattern matching (inside/out)
7 Rational simplification
8 Restructuring

Figure 7, Phases of Evaluation,

Normal evaluation consists
of the successive phases
2, 3, 5, 7, and 8,

The special variable EVMODE may be used to
change the normal mode of evaluation, For example,
the COMMAND

ws, evmode = {1, 4, 8, 1}

causes the current EXPRESSION in the workspace to
be (a) simplified, (b) expanded out in full, (c) re-
structured, and (d) resimplified,

WHERE-clauses, We have already seen how
qualifying statements alter the environment used in
evaluating the main statement in a COMMAND, In ad-
dition, any EXPRESSION may be qualified by a WHERE
clause in order to change the environment for the eval-
uation of that EXPRESSION, e, g,

x where x = 0) ,,,

LY

evaluates to 0 regardless of the value of x in the en-
vironment, The WHERE-clause may also contain a
single variable, e, g,

u where r

In this case, r is understood to be a name of a
"rule~-vector': a VECTOR of replacement rules to be
invoked solely for the evaluation of u, e. g. r might
have been previously defined by the assertion

r="{x=1,y>0,i¢ {1,2,...}}"'
or by the assertion
r='{ra, re, X>0}'

where each of RA and RE likewise evaluate to rule
vectors, As another example, the WHERE-clause
may be used to set the variable EVMODE in order to
temporarily alter the evaluator, e, g.

voe +{u where evmode = {1,2,4,2,8})+ ...
2. 7 Iteration

We have seen above how the actual parameters
used in an assertion on a FORM may be used to de-
scribe the range over which the assertion is to be
valid, For example, if i ranges over {1,2,,,.,10}
then the assertion:

is assumed to hold over all ie {1,2,...,10}. Itis
natural and convenient to extend this range convention
as follows,

Any assignment to the workspace containing a
VARIABLE which ranges over a VECTOR is iterated
over the successive elements of that VECTOR, For
example, if i ranges over the sequence 1,2,...,10
then, to display the first ten members of the sequence
{pl,pz,. .. }, one simply issues the COMMAND

Pi

If more than one variable is to be iterated, itera-
tion variables are ordered lexicographically, e, g,
given the assertions "je¢ {1,2,...,i}" and
"ie{1,2,...,n}, the command

a, .
1,)
may be used to print out a lower triangular array rep-

resented by ai,j’ i, e. al,l’ az’l, aZ,Z’ a.3,1, etc,

2,8 Operator-¥Forms

Four basic operators are provided in
SCRATCHPAD/1: differentiation, integration, sum,
and product,

The differentiation facility is substantially that of
REDUCE?2, Here the system provides the basic mech-
anisms for calculating total and partial derivatives of

50

EXPRESSIONs with respect to variables and forms,
Rules for partial derivatives of functions may be com-
pletely or incompletely specified, e, g, given the
assertion

8, flx,y) = y

then the EXPRESSION: "at f(x, y)'" will evaluate to:

y dx+ (3y f(x,y)) (3,y)

Replacement rules may also be given for partial
derivatives of any order, e, g,

2

9 y (0, 1) =phi(x, y}))

1
(0, 1) = phi(x, r, 8
gy 10 1) = phiCy) (o7, B

Manipulation of integrals may be performed in
one of two modes, In one mode, the user builds his
own table of integrals in the form of replacement
rules through assertions:

Q0
' J . (x t)*sin(x)
S 0—-1——-———=t‘1(1-(1-t2)1/2) if £0 & t<1

xX= X

else £ ift> 1

On the other hand, with the special variable
SIN=1, the evaluator will issue a call to the SIN facil-
ity in the SCRATCHPAD library to evaluate the integral,
Replacement rules are normally scanned first before
the library facility is called,

Sums may be finite or infinite and transform ac-
cording to replacement rules:

*

c
. xty,n

(1)

s . c :
i=0 x, 1 y,n-i

The normal notation for products and sums is that
which describes the total range of summation as in(1}.

Here, the variable i serves as a dummy index for the

summation, Had i been asserted to range over
{0,1,...,n} then
=]

=0 M2y be replaced by Zi

In general, if i had been asserted to range over any
VECTOR then the single subscript i may be placed on
sum OPERATOR~-FORMSs to cause summation over the
successive VECTOR elements, This'convention)
provides a more efficient notation and is a device which
allows sums over much more complicated ranges, For
example, given the assertion

ie {1,2,0..,j-1, j*1,...,k}

then

1

1 f

=1 i
Sum OPERATOR-FORMs may be used inter-
changeably with corresponding ellipsis constructs, e, g,

k
i=j1 fi

Zi fi is equivalent to: Zi: f.+ Z

and Z‘?_l f.+ =

f1+f +"'+fj—1+fj+1+'°’+f i=1 5§

k

are equivalent,

Product OPERATOR-FORMs have similar proper-
ties as sum OPERATOR-FORMs ,

2.9 Procedures

While the majority of the user's interaction might
be carried out in a step-by-step manner, there are
times when it is desirable to be able to execute a block
of COMMANDSs over and over, For this purpose, a
facility is also provided which enables the user to
create subroutines called "procedures' for subsequent
execution by the system evaluator, Any COMMAND
prefixed by a label of the form n,m for n and m in-
tegers, e, g,

1, 40 s=y where x=a

is neither translated nor interpreted but rather stored
by the system for later reference, The numbers n
and m are called respectively the block and COMMAND
numbers, After all constituent COMMANDs for a
block have been issued, a subroutine may be created
by the use of the special FORM ''procedure(n)'" in the
right-part of a statement, The effect of this
COMMAND is to copy, collate, and translate the con-
stituent COMMANDSs from block n into an executable
subroutine, For example,

taylorseries {y, x,a, n)=procedure (1), ne {0,1,.., }
is used to create the replacement rule:

replace taylorseries (a, b, c,d) by (contents of
block 1} whend in {0,1,,..}

On interpretation of a procedure, COMMANDsare
executed in numerical order with two exceptions: the
special statement "GO n' where n is a COMMAND
number causes the interpreter to go to COMMAND n
for the next step: (2) the statement "RETURN x'
causes the interpreter to exit from the block; in this
case, x is evaluated and returned as the value of the
procedure,

The user may insert, delete, or change any
COMMAND of a block as follows:

Z.
1,62 y=x"+2 inserted between COMMANDs 61 and 63
1,30 deletes an existing COMMAND 30
1, 40 s=s+h*(y where x=a) replaces COMMAND 40

Also,

proc edure (1) = deletes all COMMAND:s of blpck 1
Editing of blocks has no effect on previously

created procedures, Examples of procedures are

given in Section 13 of the appendix,

3, SYNTAX EXTENSIONS

It seems evident that no single computer language
could ever hope to realize the requirements for mathe~
maticians working in diverse areas, Their use of
specialized notations is often extremely important and
perhaps essential, It is therefore an important goal to
enable the user to introduce and use his own special-
ized notations on-line,

To accomplish this ohjective, a translator writing
system META/LISP [12] has been developed together
with an extendable language facility META/PLUS [13].
META/LISP is another in the family of syntax- directed
translator writing systems based on the META II mmodel
of V, Schorre [20], - Through META/LISP, input trans-
lators for several languages resident in the system
have been produced; these include SCRATCHPAD;
LPL, a higher-level LISP language; and META/LISP,
itself, The META/LISP facility enables sophisticated
users to interactively modify existing input translators
(Figure 8).

The extensible language facility, META/PLUS,
enables a SCRATCHPAD user to effectively and con-
veniently extend the base language at the SCRATCHPAD
source level, and without any of the formalisms re-
quired by META/LISP, For example, the notation in
the base language for the absolute value of an
EXPRESSION x is "absval (x)". If, however, the user
wishes to use the notation |x|, then he may issue the
command;

(2) "]xl " = Mabsval (x)", x expression

Here the x is used as a durnmy variable to denote
any EXPRESSION, Syntax extension commands pro-~
duce compiled incremental changes to the base trans-

£

META/LISP
Translator Writing
System

LISP

£\

META/PLUS
Extensible Language
Facility

> ~ LPL
. . (a higher -level LISP
Programming Language)
Input Translator

LAP
LISP Assembly

Language \ /

SCRATCHPAD
Input Translator

Figure 8, Components of the extendable system
(Arrows show direction of modification)

(a) META/LISP can alter any translator it produces in~
cluding its own,

(b} META/PLUS can extend any translator produced
by META/LISP,

{(c) LISP, LAP, and LPL (a higher-level LISP Program=-
ming Language) may be used to define system functions
and hence to extend the system.

51

lator and are removable at any later time:

nxjr = , X expression

Effective use of the syntax extension feature re-
quires knowledge of the constructs (parts of speech)
of the SCRATCHPAD language (Table I), The most
general form of a syntax extension command is

TN

= "D", <qualifier>, <qualifier>, ,.,
where N is a new notation, and D, its definition in
terms of known constructs in the base language plus
all extensions to date, Each <qualifier> consists of a
dummy variable followed by the name of a part of
speech: N (resp, D) contains exactly one (resp, at
least one) occurrence of a dummy variable, Each
dummy variable is assumed to range over all strings
of the type with which it is associated,

All symbols and variables which do not appear in
<qualifier>s stand for themselves, In particular, if
no qualifiers are given, then the extension is called
a '""text-to-text extension'' and is handled directly by
the input translator,

- Syntax extensions are similar to replacementrules
not only in their syntactic form, but also in the fact
that they are "stacked'" with new extensions having
precedence over old ones,

Extensions never add parts of speech to the langu~
age; rather, they augment existing ones, The part of
speech chosen by the system to be augmented is that
which as near as possible will allow the new notation
N to be given in precisely the same context as D,

Two significant features of META/LISP are (1)
the ability to detect looping in the translator induced
by an extension, and (2) the ability to add an extension
of the type '"x y'" to part of speech x for any string y
whatsoever, These features are both needed in order
to handle some of the more useful extensions to the
base language, For example,

"x1" = "fact (x)", x primary
requires that any PRIMARY x followed by a "I'" will
translate as 'fact(x)', As '"fact(x)" is a FORM, the
system initially makes the extension to FORM, But
this extension introduces a loop in the translator, The
extension is then removed and replaced by an extension
of the above special type on PRIMARY,

The system is able to guarantee that an extension
will work immediately after completion, But since ex-
tensions are stacked, the system cannot guarantee that
old constructs will not take on new meanings, For ex-
ample, the extension

(3) "l |x] [" = "norm(x)", x expression
will lead to an extension to the part of speech FORM,
If given following {2), both |x| and ||x|| will have
their desired meanings, If, however, (3) is given be-
fore (2) then (3) is effectively covered up since "| |x| L
will then translate as "absval (absval(x))'.

52

4, FUTURE DIRECTIONS

Input/Output Facilities

The chief lack in capability in SCRATCHPAD/1 is
a graphical facility commensurate with that offered by
the language and symbolic facilities, For indeed, the
emulation of the user's scratchpad is impossible with-
out a sophisticated facility for tablet input and manip-
ulation of expressions on a display. Tablet input
allows one to input two-dimensional expressions in
random order, not strictly left-to-right as required
by other devices, A graphical manipulation capability
with a facility for pointing to subexpressions suggests
a seemingly ideal way of handling manipulations which
cannot be succinctly dealt with in any other reasonable
way (Figure 9),

Original expression Altered expression

Zn-l
£
jo M
Zn-l
i=1
2‘.‘:1 gi +Z=1 (fi - Si)

A needed graphical capability,
Given the original expression dis-
played on a screen, a user may
wish to modify it in any number of
ways. Changing the circled ex~
pression to an indicated expression
alters the form of the expression
without changing its mathematical
content,

f +
n

4

8

Figure 9,

Manipulation of Inequalities and Boolean Expressions

One chief area heretofore ignored by algebraic
manipulation systems is that of manipulation of inequal-
ities, The SCRATCHPAD language, however, is de-
signed to handle any type of two-sided relation, The
implementation of appropriate facilities for manipula-
tion of inequalities as well as for sets is planned for a
later version of SCRATCHPAD,

The SCRATCHPAD evaluator model also suggests
a basis for theorem proving. The manipulation of
boolean expressions may be carried out in exactly the
same way as the manipulation of algebraic expressions.
Boolean expressions are transformed to 0 or 1, or to
another boolean expression as a result of applications
of system functions and replacement rules as shown in
Sections 9 and 10 in the appendix, The proof or dis-
proof of a theorem might be therefore established by
stating a conclusion as a boolean expression, then
manipulating the environment representing the hypahe-
sis until the conclusion is reduced to 1 or 0 by suc-
cessive transformations,

Extensions

The value of the syntax extension facility in the
SCRATCHPAD system can surely be gauged only after
substantial interaction with users of the system, The
current design is adequate for allowing new commands
to be introduced into the syétem, as, for example, to
change the input language to that of REDUCE?2, How-
ever, for extensions such as (2) for absolute value,
it is also desirable to have an extendable output trans-
lator which will make the appropriate inverse trans-
formation on output as well as to select the appropriate
output format, The feasibility of extending META/
LISP to deal with such extensions will be studied.

ACKNOWLEDGEMENTS

The dependence of the SCRATCHPAD/1 system
on the work of others has already been mentioned in
Sections 0 and 1 of this paper. Special acknowledge-
ment must be made of the benefits of a continuing
interaction with Professor A, C, Hearn of the Uni~
versity of Utah, In particular, Professor Hearn de-
veloped additional REDUCEZ facilities which were
.required in SCRATCHPAD/],

The design and implementation of the language,

evaluator, and syntax extension feature is due to

R. D, Jenks, The collection and integration of the
numerous sybsystems into the SCRATCHPAD library
and the implementation of the unlimited precision
rarithmetic package are due to J, H, Griesmer, Modi=
fications to the CHARYBDIS system were made by

F, W. Blair, F. W, Blair is also responsible for the
design of the experimental System/360 LISP system,
The implementation and continuing improvement to
the LISP system is the work of F, W, Blair, J, H,
Griesmer, J. E, Harry and M, Pivovonsky,

REFERENCES

(1] Blair, F, W,, Griesmer, J. H., and Jenks, R. D, ,
"Apn interactive facility for symbolic mathe-

matics," Proceedings of the International Com-

puting Symposium, Bonn, Germany, 1970,
pp. 394-419. :

[2] Blair, F. W,, and Jenks, R, D,, "LPL: LISP
programming language, ' IBM Research Re-
port, RC 3062, September 23, 1970,

[3] Engeli, M. E,, "User manual for the formula
manipulation language SYMBAL, " Computation
Center, University of Texas at Austin, March
1968,

[4] Engelman, C,, "MATHLAB: A program for on-
line assistance in symbolic computations,”
Proc., 1965 Fall Joint Computer Conference,
Volume 27, Part 2, Thompson Book Co.,
Washington, D, C. and Academic Press, Inc,
London, 1967, pp. 117-126; also Proc. 1965
Fall Joint Computer Conference, Volume 27,
Part 1, Spartan Books, Washington, D,C,,
1965, pp., 413-421,

?

53

[5] Engelman, C,, "MATHLAB 68," in Information
Processing 68, A, J. H, Morrell, ed,, North
Holland Publishing Company, Amsterdam,
1969, pp. 462-467,

[6] Falkoff, A, C. and Iverson, K, E,, HAPL/360:;
user's manual," IBM Thomas J, Watson Re-

search Center, August 1968,

Fenichel, R, R, , "An on-line system for alge-
braic manipulation," Project MAC Report
MAC-TR-35 (Thesis), Massachusetts Insitute
of Technology, Cambridge, Mass,, December
1966, '

[8] Hearn, A, C., "A user-oriented interactive sys-
tem for algebraic simplification, ' in Inter-
active Systems for Experimental and Applied
Mathematics, M, Klerer and J, Reinfelds,
eds, , Academic Press, New York, 1968,
pp. 79-90.

[9] Hearn, A, C,, "The problem of substitution, ' in
Proceedings of the 1968 Summer Institute on
Symbolic Mathematical Computation, R.G,
Tobey, ed., IBM Boston Programming Center,

Cambridge, Mass,, June 1969, pp. 3-19.

[10] Hearn, A, C., "REDUCE?2 user's manual, "
Stanford Artificial Intelligence Project Memo-
randum No. 133, Stanford University, Palo
Alto, California, October, 1970,

[11] Hearn, A, C., "REDUCE2: A system and langu-
age for algebraic manipulation, '" these pro-
ceedings.

[12] Jenks, R, D,, "META/LISP: An interactive
translator writing system,'" IBM Research
Report, RC 2968, July 1970,

[13] Jenks, R, D,, "META/PLUS: The syntax exten-
sion facility for SCRATCHPAD, " submitted

[14] Korsvold, K. 'An on-line algebraic simplify pro-
gram, " Stanford Artificial Intelligence Project
Memorandum No. 37, Stanford University,
Palo Alto, California, November 1965,

[15] Korsvold, K., "An on-line program for non-
numerical algebra, ' (abstract), Communica-
tions A, C. M., 9, (August 1966) p. 553,

16] Manove, M., Bloom, S,, and Engelman, C.,
"Rational functions in MATHLAB, " in Symbol
Manipulation Languages and Techniques,

D. G, Bobrow, Ed,, North-Holland Publishing
Company, Amsterdam 1968, pp. 86-97.

[17] Martin, W, A,, "Symbolic mathematical labora-
tory, " Project MAC Report MAC-TR-36
{Thesis), Massachusetts Institute of Technology,
Cambridge, Mass,, January 1967,

[18] Millen, J, K., "CHARYBDIS; A LISP program
to display mathematical expressions on type-
writer-like devices," in Interactive Systems
for Experimental and Applied Mathematics,
M. Klerer and J, Reinfelds, eds,, Academic
Press, New York, 1968, pp. 79-90,

{19] Moses, J., "Symbolic integration," Project MAC
Report MAC-TR-47 (Thesis), Massachusetts
Institute of Technology, Cambridge, Mass,,
December 1967,

[20] Schorre, D,, V., "META II, A syntax-directed
compiler writing language, " Communications
A, C. M., 8, (10), 1965, p. 605,

[21] Shaw, J, C., "JOSS: A designer's view of an ex-
perimental on-line computer system, "
Proc. AFIPS 1964 Fall Joint Computer Con-
ference, Spartan Books, Baltimore, Md, ,-

—_——
pp. 455-464,

TABLE I

INPUT SYNTAX FOR SCRATCHPAD/1 BASE LANGUAGE
(for use with IBM 2741 and EBCDIC Selectric Ball)

1 INTEGER d a*
2 VARIABLE aan
3 FORM 2s[f}} 2t
4 YVECTOR G, {51... }1*)
5 VECTOR ELEMENT [[-1v:] 19
6 SET (z 119
7 PRIMITIVE 1|2{3]4]6
8 tOPERATOR-FORM {DF|INT|PROD|SUM} s 11
9 PRIMARY 9t |7} 8
10 FACTOR 9 [**9]*
11 TERM 100t {10]...})*
12 SIGNED TERM fpl 11
13 ALGEBRAIC EXPRESSION 12[p{12 ...} 1%
14 CONDITIONAL EXPRESSION 13 [IF 19 [ELSE 13]]
15 TEXPRESSION 14 [WHERE 20}
16 RELATION 15 [r 14)
17 NEGATION [~] 16
18 CONJUNCT 17 [& 17]*
19 BOOLEAN EXPRESSION 18 [OR 18]*
20 STATEMENT [11 = | 2r] 15
21 ASSERTION 20 {, 20]*
ALPHABETIC EIF|G|H|YJ|KIL|M
R|S|TIUjV|w|Xx|Y|2Z
d DIGIT 0|l|2]3]4[5|6|7|8[9
f FUNCTIONAL ARGUMENTS (19 191%)
p PLUS-OPERATOR
r RELATOR <|<=|=|>=|>]IN
s }SCRIPTS <{21 |; x>
t TIMES-OPERATOR x[/] 1/
v SVAR 1]2
Notation:

terminal symbols appear in capital letters
braces { } are used for grouping;
vertical bar I is used for alternation;
square brackets [] are used to indicate optionality;
A% or [A]* means zero or more A's
t somewhat simplified

54

APPENDIX
Sample Conversation Using the IBM
2741 Typewriter Terminal

Table I describes the input syntax for input to
SCRATCHPAD from an IBM 2741 keyboard with an
EBCDIC selectric ball, The following character sub-
stitutions are necessary for transliterating notations
appearing in Section 2:

substitutions
braces {,} ()
brackets [, <,>
member symbol € N
relators =, = <=, >=
boolean operator ALV &, OR
prefix operators Z,ILf,8 SUM, PROD,
INT, DF
In addition, a blank must precede < and > when used
as a relator or part of a relator, e. g.
x less than i is written: x <i not x<i

1) CONVERSATION

A conversation with SCRATCHPAD consists of the user
issuing commands to the system; user input in lower
case begins in column §; system responses in upper
case begin in column 1

commands confined to a single line need
no termination symibol

otherwise, commands may be separated by
semicolons

X _ an underscore is used
= _ to continue 2 command
1 to the next line
X typing the name of VARIABLE or FORM
X: 1 results in the display of its value
x=& a syntactically incorrect command {s typed
X=& back to the user with an underscore
— under the offending character
y VARIABLEs and FORMs initially evaluate to
Y themselves
ws expressions standing alone are evaluated and
Y put into the workspace; ws
y=2 typeout ocaurs only when ws fis set
y typeouts of VARIABLE values are labeled
Y: 2 if VARIABLE has substitution
X=y the r,h,s, of a statement is evaluated
X in the current environment
X: 2
‘y'+2 the value of a quoted expression is the
Y + 2 expression ftself =
ws further evaluation yields the value
4 of the expression
x="y'+2 quoting delays evaluation on assignment
X
X: b4
y=3
X
X: 5
x where y=1 WHERE ~clauses alter the environment
3 for evaluation
r="(x=1,y=2)"
x+y where r when a WHERE -clause contains a single
3 VARIABLE that VARIABLE is assumed

to evaluate to a VECTORof statements

2) REPLACEMENT RULES y<i>=i, 1 In _ qualifiers are used to indicate range over

Commands create relationships between VARIABLES (or (-5,12,18,20,...) which the rule is valid
FORMs) and EXPRESSIONSs called "replacement rules”, p*Q*r+p*r*s,_ o, totemporarily alter the environment
Replacement rules will be described here by the follow - factors=(p,q) of evaluation
ing prototype: PR (Q +S) but not to indicate global dependencies:
"(r) replace f by e when c” x=0, t > 10 means: "(=) replace x by 0"
where: t=~5 . not: "(=)replace x by0 if t > 10"
r is one of the relatorss <, = , =, =, >, andIN; X To create the latter type of
f is a standardized representation of the VARIABLE/FORM; 0 rule, IF-clauses must be used

e is an expression, a substitution for f; and
c is a conditfonal-expression which describes conditions
under which a substitution will occur
The r {s used to indicate the mode of evaluation in which
replacement will result, Evaluation is normally in the
(=)-mode; see Section 6 for examples of evaluation in
other modes,

4) IF-CLAUSES
An IF-clause is used to give conditional expressions or to
specify additfonal conditions for.replacement rules,

x=0 "(=) replace x by 0" xX= clear x
X x=1 if t > 10 (=) replace x by 1 whent > 10"
X: 0 x, t =12 evaluate x in the environment where
y(1)=1 "(=) replace y(a) by 1 when a=1" 1 t equals 12
y(1l) replacement rule exists for argument 1 : f{x)=x parameters of FORMs on L.h.s, cannot
Y(1): 1 CAN'T DO have environment-dependent ranges
y(0) but not for argument 0 t > 10
Y(0) x==1 if t < 10 "=)replace xby -1if t> 10"
y(l)= rules are cleared by X old rule remains
y(1) tssuing a statement 1 "replace f(a) by a when
Y(1) with an empty r.h,s. f{t)=t if t in s t >10&tins",
x>0 "(>)1eplace x by 0"; declaresrange of x; fFlx,y)=x**y if x>y, x>0, y>0
X no substitution since evaluation isin(=) - mode f(1,1) “(=) replace f (a,b) by a*™b
X F(1,1) whena >b& a> 0&b> 0"
f(x)=x "(=) replace f(a) by a when a > o" X= let x have arbitrary range
y=1 with y=1: sin(pi) no trigonometric functions initially
fly)=0 "(=) replace f(a) by 0 when a=1" SIN(PI) known to the system
(1) new rule takes precedence sin(x)=0 if absval(x/pi) in (0,1,...)
F(1): 0 "(=) replace sin(a) by 0 when
f(2) but old rule remains sin(2*pi) absval(a/pi)in (0, 1,...)"
F(2): 2 SIN(2 P1): O
£(0) no rule for f(a) when a=0
f(0)
x= clear x giving x arbitrary range
flx)=2+%x “(=) replace f(a) by 2*a”
f(1) all previous rules overridden 5) COMPOUND STATEMENTS
F(1): 2 This section discusses several useful constructions which are
x in (1,2,...,n)"(n)replace xby(1,2,...,n)" provided as built-in extensions to the base language.
flx)=x (=) replace f(a)by a when a in a=1l;b=1;c=1 multiple rules are separated by semicolons
f(2) (1. 2,...,0)" but not known if n > 2 a=b=c=1 equivalent to the above
f(2) so replacement rule is not used b
n > 2;f(2) range of n known, so rule applies B: 1
F(2): 2 (x,y,2)=2 the left-hand side of rule may be a
X VECTOR of TERMs all receiving
X: 2 {dentical treatment
(x,vy,2)>=0 equivalent to: x=0; y =0; z=0
3) COMMANDS WITH QUALIFIERS v \ no existent (=)-replacement rule for y
The general form of a command is that of a main statement Xd>=y>=zd= o equivalent to z Z0; y= 2z xZy:
optionally followed by a number of qualifying statements the value of a statement p g is th
- p =q is the
with commas separating, Statements are evaluated from left hand side p
right to left with each qualifying statement affecting only

the environment of evaluation for statements to its left,
Only the main statement creates a replacement rule; this

rule is added to the environment at the conclusion of the 6) INEQUALITITES (these facilities are not operable
evaluation of the command, in SCRATCHPAD/1)

x=1 t=u=v= let t, u, v, be arbitrary
f(x)=3*x, x > 0 "(=) replace f(a) by 3*a when a > 0" (x,y) > 0 let x and y be positive
f(2) left-most statement creates permanent X no “=" replacement rule exists for x
6 replacement rule; X
X the x >0 has no global effect: qualifiers >) X evaluation in the (>)-mode is signaled by
1 create temporary replacement rules 0 a >) preceding the command
f(i)=g<i>-g<i-1>,__ which only affect the environment of t+x “(=) replace ws by t+x"
g<i>=ulx=i*h), _ evaluation for statéments to their T + X
i in (1,2,...) left; "(=) replace f (a) by u(x-2*h)) ws “(=) replace ws by t*
=u(x(a-1)*h) when a in (1, 2,...)" T
f(1) the ordering of qualifiers in above example Ye=x' "(=)replace ws by =x"(enterequation intows)
U(x = H) = U(x) was essential T =X

55

>) ws evaluating equality in the (>)~mode may turn

T>0 the equality into a relation
(x=t) "(=)replace ws by =x"(enter equation into ws)
X =T
>) ws evaluation in (>)-mode only affects the
X =T r.h.s, of a relator
't < x'
T <X
>) ws (>)-evaluation will notwork when substitution
T <X is not appropriate
reverse(ws)
X>7T
>) ws where t >1
X >1
F(t) <g(t), t > 0 ~(<)replace f(a)bygla) when a > 0"
<) f(t)
F(T) the sign of t is unknown
<) f(x) x is known to be positive
G(X)
flury) <=f(u)*f(v)
<=) f(2*w) "(<) replace f(a)by f(b)*f(c) when a=b*c"

F(2) = F(W)
flu+v)d=u+v

cascade=0 force substitution to go one step at a time
>) flx+y)

X+ Y
>) ws x, y replaced by 0 since each

0 has been asserted positive
u="g(x)=F(x+y)+y"' enter equation into u
u load equation into workspace
G(X) = F(X + Y) + Y
>) alter(2,1) selectively evaluate the 1st part of the
G(X) > X + 2Y 2nd part of the workspace, i.e. f(xy)
>) ws
G(X) > 0
cascade=

U:

remove value from cascade

7) MORE GENERAL STATEMENTS
The most general left-hand side of a statement currently
allowed is that of syntactic type TERM (roughly speaking,
product of powers of VARIABLEs, FORMs, and expressions
enclosed in prens).
xX=y= let x, y have arbitrary range
sin(x)**2=1-cos(x)**2
sin(x)*cos(x)=1/2*sin(2#*x)
(sin(u)+cos(u)) **2
1 + SINQ2U)
df<x>sin{x)=cos(x)
df<td>sin(t)**2

SINCZT)

(p,q,r) constant

np+q=5 left-hand side is most generally a TERM
CAN'T DO

(p+q)=2

xps=0 turn off "expand powers of sums"” flag

2 + (p+q)**2

6
(2+p+q)*x2 p+q must appear in patentheses for
2 substitution to occur
(2 «+ P+ Q)
rx(p+q)**li*xx=10%x
(r+(p+q)r*l)*x*2 expansion occurs before matching
2
R + 276 '
Xps= turn on expand flag
(p+q) **2

2
P+ 2PQ + Q prens lost hence no substitution
flg(x),x)=x "(=)replace f(a, b)by b when a='g’ (b)"
f(ulx,y),g(x),h(y))=0, x > 0
“(=)replace f(a, b, c)by Owhen &"u’ (d, e) &
b='g'(d)&c="h(e)ed > 0"

56

8) SEQUENCES AND ITERATION

The following range convention has been adopted for
SCRATCHPAD/1: if an expression standing alone
contains a VARIABLE ranging over a VECTOR then
that expression is iterated over the successive elements
of the VECTOR.

i in (1,2,3)

2%i
2 "(=) replace ws by 2"
b "(=) replace ws by 4"
6 “(=) replace ws by 6"
i+j where j in (1,2,...,1)
2 i=1; F1
3 1=2; F1
b =2; =2 iteration VARIABLEs are
ordered lexicographically
b =3; F1
5 i=3; F2
6 1=8; F3
dots=1
(a<1>,a<3>,...,a2*n+1>)
A
1 with "dots= 1", the first, second,
and last elements of an ellipsis
A 3 sequence are given
A Otherwise, if the limit is symbolic or
2N+ 1 infinite, the user gives a carriage
dots= . retuin to obtain successive values
(i:a<i>), 1T in (1,2,...,2%n+1)
A
1
(carriage return)
A
3
. (stop iteration)
p<l>=1 recursive definitions
p<2>=1 + x
p<id>=x*pLi=1>~d*p<i-2>, 1 in (3,4,...)
i in (1,2,...)
pdi> iteration on an infinite sequence
P :1 user gives carriage return to obtain
1 successive values
P:X+1
2 (carriage retum)
2
P:X +X-0D
3
. (stop iteration)
J oin (p<1>,p<2>,...)
A a<j> non-linear iteration results
1
(carriage return)
A
X +1
(carriage return)
A
2
X+ X -0
. (stop iteration)
j ** D
1
2 (carriage return)
1+ 2X + X
. (stop iteration)

9) BOOLEAN EXPRESSIONS AND THEIR EVALUATION

A relation is a simple example of a boolean expression,
The evaluation of relations containing one of the
operators =, <, > , = isexemplified by that of > .

1 >0 this is an illegal STATEMENT

CAN'T DO
(1 > 0); (0 > 1) these are retations

1 1 means “true”

0 0 means "false”
x=y=; (x > 0) clearx and y; is x> 0?

X >0 relation not reducible to 1 or 0
x=y; (x > 0) set x to y; is x > 0?

y >0 relation reduces to another relation
x = 1; (x > 0)declare range of x

1 x is > 0 if it evaluates to number > 0
x > 0; (x> 0) or, if it is declared to be so

X 2 y;y > 0; (x > 0) o ifitis declared tobe > a
1 VARIABLE and that VARIABLE >0

X 2% y; vy > 2; (x > 0) et
1

X < y; y <==1; (x > 0) butnot >0 if it can be shown to
0 be = 0;

x <1; (x > 0) if it is undecidable, relation remains
x>0 unchanged

X >=y; vy > =1; (x > 0)
x >0

A relation (x in S) evaluates to 0, 1, or another logical
expression derived thereof,

(5 in (1,2...)) aVECTORis permitted as the r.h. s,
1 of an IN relation
x in teger let x range over all integers
(x in (1,2,...)) the relation: isx1in(1,2,...))?
(x >= 1) reduces to: isx =17
(x in (1,5,7)) when the VECTOR is not an
(x in (1,5,7)) ellipsis expression involving an
(x in (1 +,5,7)),x=4 arithmetic progression of integers,
0 the relation reduces to 1, 0, or
(x in (1,5,7)),x=1 the original relation with left
1 and right sides evaluated

More general logical expressions are formed from relations by

using the operators =, OR, and & in the customary way
("12) any non-zero number {s equivalent
0 to 1 when used with boolean operators

x=0; (12 & x); (12 or x)

o

10) SETS
For the evaluation of (x in S) where S evaluates to a set,
the value returned is that of the defining predicate of set
evaluated in the environment where its dummy parameter
is bound to the value of x,

N=(1,2,...) the set of positive integers
N=(i|i integer & i SET definition of same
(10 in N) The relation (x in S) for set

1 S reduces to 0 or 1,
x=
(x Tn N)

(X INTEGER & X > 0)
S=(x]f{x) > 0)

> 0)

.or, to another expression
derived thereof
1 e set of x such that f(x) > 0

fly)=1, y > 10 define f(a) for all parameters
fly)=0, y < 10 a except a=10
(1 in S) The value of (1 in S) equals the
0 value of (f(1) > 0)= 0
(11 in S) The value of (11 in S) equals the
1 value of (f(11) >0)=1
(10 in S) The value of (10 in S) equals the value
f(1o0) > 0 of (f(10) > 0) which is itself

11) VECTORS

(1 ,2 .3) elements of VECTORs are printed out
% one per line
3
n>?2 establish range of n
i,j] in (1,2,...,n) establish range for i and j
h=(i:(j:1/(i+j-t))) generalized Hilbert matrix(order n)
(h)<2,2>
1
- T
(h)<3,2> range of n mustbe properly established
’ .
DON'T KNOW THAT n >= 3
(h)<n=1,n> (1,2, ...,n) musthave atleast 2
elements ifn > 2
1
2N - T -1
(h)<o,1> value of elements outside range is 0
0
h<1,2> l-Ii j is independent of H
H)
1,2
h<i,j>=(h)<i,j> defines h, ; foralli,jin (1,2, ...,n)
h<1,2>
1
H e
1,2 3 -7

A=(i: (j: a<i;j>)) let A have elements a;
if (i+j)//2=0, _ i, j integer
integer
Give replacement rule for a <i;j>
for integer index values i, j where
1 i+j is even

A 2 Then print A for n=2
1
2
A
1
1
A
2
2
A: b
2 \
deltadi,j>=(i=]j) define Kronecker delta
delta<i,j>=1 if i=] else 0 sime
I=(i:(j: delta<i,j>)) define unit matrix
I=Ci: (j: i=j)) a more convenient way
H*[, n=2 Arithmetic expressions are

1 given for vector(ormatrix)
""" expressions in exadly the

2 -7 same way as for scalar
expressions,
1
3 -7
1
3 -7
1
b - T

12) SUM OPERATOR FORMS
ussum<i==n;n>f(i)
i in{(-n,...,n)
u=sum<i>f(i); u

summation indices are given directly,
or, indirectly through VECTORs
{n assumed > 0)

--=N
/ fC)

——i=eN

Sums with a FORM as a summand
are decomposed into sums over the
various domains of definition

u, fli)=1, i in (-n+1,...,n-1)
F(-N) + F(N) + 2 N - 1 (f undefined at end potnts)

u, FCid=1, i <=0

---N
/ 1 FCi) « N (f undefined on positive integers)
- - = ' =

u, f(0)=0

--- -1 ---N
/ FCi) + /

—mmi=eN ---i=1

(f defined only at 0)
F(i)

13) PROCEDURES

Commands beginning with a numerical label of the type n.m'
are not interpreted but stored by the system to be later com-
bined to form a procedure by means of the special FORM
procedure (n)", A procedure is a block of commands to be
executed as a group, The number n refers to the block, the
number m to the command, Command numbers are treated
as integers when collated to form a procedure,

The following additional statements are allowed in a procedure:
a) the statement "GO n" is treated as a jump to
step number n
b) the statement "RETURN n" causes an exit from the pro-~
cedure; n is then the value of the procedure,

1.10
1.20
1.30
1.40
1.50

m=(u)<1>
i=1

return m if
s=(u)<i>

go 60 ifm > s

load first element into m
(should be i=2)
i>length(u)
load nex element into s
if m>s goto60
(missing staternent)
advance index
20 to step N
(junk)

1.60 i=i+1
1.65 go 30

1.70 hoho

max(u)=procedure(l), _

(m,i,s) local declare m, i, and s local

1.20 i=2 change step 20
1.55 m=s insert between step 50 and 60
1.70 delete step 70

max(u)=procedure(l), _
(m,i,s) local

x=(1,4,3)

max{(x)

try again

erase block 1

Taylor-series expansion of y
about x=a in powers ofh
to order n

procedure(l)=
1.10 i=0
1.20 h=1
1.30 s=y where x=a
1.40 i=i+1
1.50 return s if i > n
1.60 h=h*(x-a)/i
1.70 y=df<ix>y
1.80 s=s+h*(y where x=a)
1.90 go 40
taylorseries(y,x,a,n)= _
procedure(l), y=x=a=,_
(s,i,h) local, n in (0,1,...)
"(=) replace taylor series (a, b, ¢, d) by
BEGIN s,i,h; ... END when
din(o0,1,...)

58

14) SYNTAX EXTENSIONS
[-2]

-2 Notation]x] 1s not part of the

base language but may be added by

means of synt i
“Ix|" = M"absval(x)", «x gg;g;gg?gﬁcﬁmnmm
EXTENSION OF TYPE FORM

-2

) try out
x| = , X expression remove extension
ALL EXTENSIONS REMOVED FROM FORM

“n mod p" = "n-p*(n//p)",_ define “mod" for n, p

n,p svar variables or numbers
EXTENSION OF TYPE ALGEBRAIC EXPRESSION
13 mod &4
1
E=(n | n mod 2=0) define E = set of even integers
faven" = "in gV

" TEXT TO TEXT EXTENSION

f<i>=i**2, i even define f over even integers i
"(nxx| Y"="(x|x mod n=0)",_
n integer, x variable
EXTENSION OF TYPE SET
F=(3*n|) set of integers congruent to 0 mod 3
"(n*x [r)"="(x|r&x mod n=0)",
n integer, x variable, r relation
EXTENSION OF TYPE SET
(S+#m| m > 0)

set of positive integers congruent
to 0 mod m

"integrate f wrt x"="int<x>f", _
x variable, f term (INTEGRATE command)
EXTENSION OF TYPE OPERATOR-FORM
"let x=y" = "x='y'", (LET command)
x term, y expression
EXPRESSION OF TYPE STATEMENT
"consider x" = "(x)",_
x expression
EXTENSION OF TYPE PRIMARY
"put X into y" = ||y=xu’_
x expression, y variable
EXTENSION OF TYPE STATEMENT
"substitute x=e Into y"=_ (SUBSTITUTE command)
"y=y where x=e', -
(x,y)variable, e expression
EXTENSION OF TYPE STATEMENT

(CONSIDER command)

(PUT command)

let y=g(x,t)

4 y= g0
consider 2%x=y (2%= y)
2 X = G(X,T) .
integrate ws wrs x int <x >ws
2 /
X = | G6(X,T)
put ws into u u=ws
substitute _ wu where g(x, 1) = 4950% - 1
g(x,t) = hxxxt**2 -1 into u
u
2 2 2
Us X =2XT =X
"set' = "substitute"
TEXT TO TEXT EXTENSION
Ilinll = "into"
TEXT TO TEXT EXTENSIOM
set x=1 in ws ws= ws where x=1
2
1 =27 -1
set t=1 into ws

equation 1=1 reduces to
1 (meaning "true")

