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THE ALIST MODEL

The thesis of this note is that, in order to achieve uniform semantics between
compiled and interpreted code, and to avoid exposing all sorts of internal
hacks to the user, we require a model for the semantics of the new algebra
system. Among the requirements of this model are that it be

1. Simple

2. Powerful

3. Related to a user's perception of the system.

It is not necessary that it be efficient.

I propose, as I believe others have done, the Alist model for computer algebra
systems, in which a domain is conceived of as a set of values (about which
little more will' be said), a set of attributes (I do not fully understand
these, but believe that they will follow much the same lines as operations)
and a set of operations. The set of operations lists all the operations that
can be performed on elements of the domain, and the user is invited to view
the system as searching this list for an operation of the appropriate signa
ture, and then applying it.

Implications for operator resolution

When the system, in parsing, meets an occurrence of an operator, it has
solve it, i.e. it has to decide how to implement the operation. The
tells us that we can discover what operations are admissible by looking
Alists which correspond to domains.

to re
model

on the

This model is a little vague in some respects, so let us spend some time clar
ifying it. The first problem that we have is nullary operations. The new al
gebra system supports several nullary operations, which can be regarded as
being basically of two types:

1. Domain-specific constants, such as zero and one. Since the zero and one
(or any other distinguished elements) of a domain have to be computed spe
cially for each domain, the algebra system treats them as nullary func
tions, whose values lie in the domain. These functions can be found from
the Alist of the domain.

2. Properties of domains. The system supports functions that will tell you
about domains, for example the function characteristic defined by:

Ring:Category == Join(Rng,Monoid) with
[operations] characteristic: -> Integer

The Alist model 1
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which maps into the integers. Clearly it would be possible for all such
functions to be found on the Integer Alist, but this is undesirable for
many reasons:

o every time a new Ring was instantiated, the list of functions avail
able in Integer would change, which has some baroque implications for
modularity;

o there would be a great number of characteristic functions on the Alist
of Integer, which might make searching for them hard;

o the user views 'characteristic' as a property of the domain, not of
the integers, anyway.

For all these reasons, we state that operations like characteristic are
associated with their natural domain, and we indicate this by syntax like

<u,lffel>:=SqFr (DivExpts (p,P.characteristic) :P)

where 'P.characteristic' means "the characteristic of the domain plIo

The remark made above "searching this list" is unambiguous for totally
homogenous operations, but for heterogeneous operations we can ask "which
list?". Heterogeneous operations come in several flavours.

1. On the one hand we have the heterogeneous operations that have the general
signature

($,$) -> well known object

(or any similar such signature) such as EQUAL, > and so on. These are no
problem; they can be looked up on the Alist corresponding to $.

2. A closely related set are those that take a well-defined type among the
operands, such as

coef: ($,Integer) -> R
**: ($,Integer) -> $

These too are no real problem. We do not want to enter them on the
for the "well-known" domains, for the same reasons as those quoted
when we were discussing nullary functions. Therefore we insist that
are only on the Alist of their other operands, which means that, in
eral, it may be necessary to search the Alists of all the operands to
cover a particular function.

3. A more interesting problem are the truly heterogeneous operations, such as
the multiplication of non-square matrices. Here we can only say that the
operation will be found in the Alist of at least one of the argument do
mains.

In this model, asserting that a particular domain belongs to a particular cat
egory means that you are guaranteed to find, in that domain, all the oper
ations mentioned in the category declaration. You may well find more.

The Alist model 2



CATEGORIES

There are various categories in any system built in the manner we envisage,
and it will be useful to make certain distinctions. For this purpose, we will
consider the code in Figure 1 on page 3, which is laid out diagrammatically in
Figure 2 on page 4. We have omitted all consideration of attributes, since:

o They follow the same general principles of inclusion and inheritance as
operation definitions;

o We know more about operations than we do about the semantic meaning of at
tributes.

Set:Category == with
[operations] n=n: ($, $) -> Boolean

format: $ -> PrintBox
SemiGroup:Category == Set with

[operations] n*n: ($,$) -> $
n**n: ($, PositiveInteger) -> $

Monoid:Category == SemiGroup with
[operations] 1: -> $

n**n: ($, NonNegativeInteger) -> $
Group:Category == Monoid with

[operations] inv: $ -> $
n**n: ($, Integer) -> $

AbelianGroup:Category == Set with
[operations] 0: -> $

n+n: ($,$) _> $
n_,,: $ _> $
"-". ($,$) -> $

Rng:Category == Join(AbelianGroup,SemiGroup)
Ring:Category == Join (Rng,Monoid) with

[operations] characteristic: -> Integer
recip: $ -> Union($,"failed")

Figure 1. Some code for categories: with the operations listed,
corresponding to the tree shown in Figure 2 on page 4.

In the code presented in Figure 1 we see two important keywords, viz. Join and
with.

Join denotes that the category being defined (on the left hand side of
the == function) is composed of all the operations (and attributes)
of the categories being joined together.

with indicates that the category
before the 'with' together
described after the 'with'.
for there to be no category

being defined consists of the category
with all the operations (and attributes)
It is possible (e.g. the case of 'Set')

before the 'with'. This is then an im-

The Alist model 3



1----------------------------------------------------------------------------
I (Empty Category) [=, format]
I] ]
I] ]
1 ]

I [0,+,-,-] Set [*, **(P1)]
I] ] ] ]
I] ] ] ------:,..--- ]
I] ]

1 AbelianGroup SemiGroup [1, **(NN1)]
I ] ]] ]
I J ] ]__----= ]
I ] ]
1 Rng Monoid [inv, ** (I)]
1 ] ]] ]

1 ] ------:::--- ] ] _---,:--__]

1 ] ]

1 [characteristic,] Group
I recip] ]
I] ]

1 ] -=-- ]
1 ]

1 Ring
1

1 Figure 2. Corresponding diagram: for the code shown in Figure 1.
1----------------------------------------------------------------------------

plicit reference to the empty category (1) . The statement A with B

can also be regarded as Join(A,B'), where B' is the category defined

by B. Hence we can regard B as defining a category, which we shall
term a nonce category, since it is only in effect for the duration
of the 'with' statement. 'with' is in fact defined(2) that way, so
we can regard all 'with' statements as replaced by equivalent 'Join'
statements. Nonce categories are often ignored when drawing dia
grams, as we can see by comparing Figure 2 with Figure 4 on page 9 .

'Join' is an n-ary operator, and is forced so by the system, so that the fol
lowing are all equivalent (3) :

(1) There is a curiosity in the terminology here.
with no operations defined on it, and therefore
domains belong. Perhaps it ought to be renamed
but this also has unfortunate connotations.

The empty category is that
it is the one to which all
the "universal category",

(2) The reader may then ask why we have both. The answer is that, in prac
tice, it proves easier to have both, since there are many instances where
a nonce category is required, and it would be tedious to have to create a
named one.

(3) C' being the nonce category corresponding to C.

The Alist model 4



Join(A,B) with C
Join(A,B with C)
Join(A,B,C')

We do not assume that Join is commutative, and, in the discussion on principal
arrows (page 9) the reason for this should become apparent.

It is also possible to have anonymous categories, such as are formed by Join
(or with) constructs that occur in other contexts than the instantiation of
named categories, such as:

Integer: Join (OrderedSet,DifferentialRing,EuclideanDomain) with
[operations] oddp: $ -> Boolean

abs: $ -> $
random: PositiveInteger -> $
numberOfDigits: ($,$) -> $

Conditional Categories.

So far we have assumed that the relationship between categories is fixed.
This is normally(4) true if we are considering pure category definitions, but
may well not be true when we come to functors. Consider the following code:

PolRing(R:Ring,E:OrderedAbelianGroup): T == C
where

T == Algebra(R) with
[operations] if R has IntegralDomain then "II": ($,R) -> Union($, "failed")
[assertions] if R has unitsKnown then unitsKnown

if R has commutative ("*") then commutative ("*")
if R has IntegralDomain then IntegralDomain
if R has IntegralDomain and R has canonicalUnitNormal

then canonicalUnitNormal

One might assume from it that $ (i.e. T) was always an Algebra(R), but, in
fact, if R is an IntegralDomain, $ is an Algebra(R) with the II operation, and
it is also an IntegralDomain. Hence (in this case) its category is, in fact,
Join(Algebra(R),IntegralDomain) with II .. , . Since the category to which it
belongs depends on other information (in this case the category of R, but it
could depend on attributes, or on things like the primality of a number), we
call this the problem of conditional categories.

This clearly is a problem, since we do not know how to handle the placement of
the operators that mayor may not be defined in the domain, depending on the
conditional information. The solution adopted is to create a maximal repre
sentation for $, i.e. if $ could belong to one of several categories (a, b ,c
... ), we in fact instantiate it in Join(a, b, c ... ).

(4) In the versions of this paper of 82/07/19 and before it was always true.

The Alist model 5



Conditional declarations.

When is it legitimate to make a conditional declaration? The answer to this
is that there are really two kinds of conditional declaration that can be
made.

The first is when we are declaring confitional information about an existing
(input) domain, as in

PolRing(R:Ring,E:OrderedAbelianGroup): T C
where

T == Algebra(R) with

if R has IntegralDomain then
unitNormal(p) ==

p = () or p.first.c = 1 => UnitCorrAssoc(l,l,p)

Here the requirements are quite straight-forward: either the declaration must
already be true (i.e. the new type must be an ancestor of the existing type),
or it must be possible to add the new type consistently with existing informa
tion (i.e. the new type must be a principal descendant of the existing type.
If neither of these conditions is the case, then we have some form of type
mis-match.

The other possibility is that we have a conditional declaration for an output
domain. This is the example above, under "conditional categories". Here the
declaration must be made initially, since space must be reserved for addi
tional operators (a sordid implementation reason, but this corresponds to the
absence of any syntax for declaring new operators on the fly, so we shall
leave it for now).

A genuinely conditional category.

It is occasionally necessary to declare a (parametrised) category with condi
tions. The first example of this known to the author is the following (due to
Mr. Trager).

BasicPolynomial(R:Ring): Category ==
GeneralPolynomial(R,NonNegativeSmallInteger) with

var: -> Expression
varPol: -> $
PDerive: $ -> $
map: (R -> R,$) -> $
if R has Field then EuclideanDomain
if R has UniqueFactorizationDomain then content: $ -> R
if R has UniqueFactorizationDomain then

UniqueFactorizationDomain

This category is later used in the following context

The Alist model 6



[characteristic,
recip]

]

] -------::-----
]

Ring

SparseMultivariatePolynomial(F,R:Ring,VarSet): C == T
where
VarSet: OrderedSet with coerce: $ -> Expression
S: Ring
F(S): BasicPolynomial(S) with

where the conditions are required to ensure that the functor F supplies the
operations required.

Implicit relationships.

(Empty Category) [=, format]
] ]

] --------:------]
]

[0,+,-,-] Set [*, **(PI)]
] ] ] ]

]-----] ]-----=-----]
] ]

AbelianGroup SemiGroup [1, **(NNI)]
]] ]] ]

] ]---".---] ]--------::"----]
]] ]
] Rng Monoid [inv, **(1)]
] ]]]

]-------=-------] ] ---::-----]
]

Group

Figure 3. An alternative layout: in which there is an
relationship between the categories Rng and Ring.

implicit

Consider the relationships of Figure 3 as an alternative to those proposed in
Figure 2 on page 4. This differs in that we have

Ring:Category == Join(AbelianGroup,Monoid) with

instead of

Ring:Category == Join(Rng,Monoid) with

Mathematically, the two should be the same, since a Join (AbelianGroup,Monoid)
is automatically a Join(AbelianGroup,SemiGroup), i.e. a Rng. But there seems
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no obvious way for the system to detect this difficulty, which
problem of implicit relationships. So we will content ourselves
the user that he should not fall into this trap, with the note
interesting problem for future development.

RELATIONS BETWEEN CATEGORIES

we call the
with advising
that it is an

Having defined our model, we must then define how we intend to implement it.
For this purpose, we will work by example as much as by formal definition.
The scenario of category definitions being considered is that of Figure 4 on
page 9 (N.B. I am not stating that all algebra systems, or even that any alge
bra system, ought to use these category definitions in this way; it is merely
a convenient scenario within which we can operate). Throughout this document,
I will assume that all categories are based on the fundamental category Set.
This does not appear to be a fundamental restriction, but it seems to make
some of the presentation easier. This shows a collection of categories. A
category that is connected to another one by a downward arrow is declared to
be a sub-category of the other one, i.e. by statements such as:

Monoid: Category SemiGroup with
Group:Category == Monoid with ...
AbelianGroup:Category == Set with
Ring:Category == Join(AbelianGroup,Monoid) with .,.
OrderedSet:Category == Set with '"
OrderedRing:Category == Join(OrderedMonoid,Ring) with

We also use the phrase extension(5) in this context, saying that Monoid is an
extension of SemiGroup, or that OrderedRing is an extension of both Ring and
OrderedMonoid.

Such structures are generally represented by diagrams such as Figure 4 on page
9. In such diagrams it is conventional to omit the nonce formed by the with
statements, and the associated arrows, and draw only the named categories.

We state that a category is a descendant of another category if it is con
nected(6) to that category by downward arrows. This would imply that all cat-

(5) If A is an extension of B, then it has more operations or attributes than
B, and therefore fewer domains belong to A than belong to B (in the sense
that every domain that belongs to A can be mapped into a domain of B by
the forgetful functor, but that not every domain of B is necessarily an
image of the forgetful functor). This may seem a somewhat perverse use of
the word "extension", but there appears no adequate nomenclature. This
problem is the same one as that of the definition of the empty category
(page 4).

(6) Note the distinction between this and the concept of extension mentioned
above. Every descendant is an extension, but a descendant can be con
nected by more than one arrow, acting in series. More formally, the re-
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]
]

OrderedSet
]
]
]
]
]
]
]
]
]

] ]
OrderedMonoid

] ]
] ]
] ]
] ]
] ]

BasedOrderedMonoid ]
]
]
]
]
]
]
]
]

] ]
OrderedRing

----------------------------------------------------------------------------1
Set

]

]-----::--::-
] ]
] ]
] ]
] ]
] SemiGroup
] ]
] ]
] ]
] ]
] Monoid
] ]]]

] ]] ]-------------
] ]]

] ]]-------=-
] ] ]
] Group]
] ]
] ]
] ]
] ]
] ]

AbelianGroup ]
] ]
] ]
] -::------]
] ]
Ring
] ]

] ]-------------------]
]

IntegralDomain

Figure 4. A Directed Acyclic Graph of Categories

egories are descendants of Set, that OrderedRing is a descendant of
OrderedMonoid, Ring, OrderedSet, to name but a few, and many other such de
scendant relationships. If A is a descendant of B, we can say that B is an
ancestor of A.

There can be many downward arrows leading into a category: let us select one
and call it the principal arrow. Figure 5 on page 11 shows a choice for all
the principal arrows in the situation of Figure 4. Note again that this
choice is arbitrary, and the choice we have adopted is that the first category

lation is a descendant of is the transitive closure of the relation is an

extension of.
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mentioned in a Join statement is the one from which the principal arrow comes.
This leads to the idea of principal descendants - a category is a principal
descendent of another one if it is connected to it by principal arrows.

Having made this, essentially arbitrary, choice of principal arrows (and hence
of principal descendants), we can now define the concept of principal
ancestor. This follows from the definitions: If A is a principal descendant
of B, then B is a principal ancestor of A. Looking at Figure 5 on page 11, we
see that, while Ring and OrderedMonoid are both ancestors of OrderedRing, only
Ring is a principal ancestor.

This leads to the concept of a fundamental ancestor: we say that the set B1,
B2, ... of ancestors of B is a set of fundamental ancestors of B if:

1. Every Bi is an ancestor of B;

2. Every ancestor of B is a principal ancestor of one of the Bi. This prop
erty will be used repeatedly in what follows.

A given category may have more than one set of fundamental ancestors, but it
can have only one minimal set (e.g. Ring, Monoid, OrderedSet, OrderedMonoid is
a set of fundamental ancestors of OrderedRing, but Monoid is redundant, since
it is a principal ancestor of OrderedMonoid). The minimal set of fundamental
ancestors of a category can be determined by the following algorithm:

[1] Current := [A]; FA:= [A]; Processed := [A]
[2] While Current not equal [Set] do
[2.1] For each C in Current,
[2.1.1] For each D such that C is an extension of D
[2.1.1.1] Current := Current union D
[2.1.1.2] If C is a principal extension of D
[2.1.1.2.1] then FA := FA less D
[2.1.1.2.2] else if D not in Processed then FA := FA union D
[2.2] Current := Current less C
[2.3] Processed := Processed union C

This algorithm can be justified by considering walking breadth first up the
tree, marking (by placing in Processed) every node we come to. We will often
use the term "fundamental ancestor of" to mean "member of the minimal set of
fundamental ancestors of".

REPRESENTATIONS OF CATEGORIES

We represent every category by a Vector, laid out in the following way:

o Name of the category (e.g. (IntegralDomain) or (Module R), where R is the
argument passed to the LISP function Module. [Is this right? We might
have (Module <monstrous Vector representing a Polynomial domain with Ma
trix coefficients .. .». Perhaps, though, this is better than the alter
native, and we could arrange to print this as (Module (Polynomial x
(Matrix 2 (UnivariatePolynomial y (ZModN 7»»)]

The Alist model 10



----------------------------------------------------------------------------
Set
] ]
] ]
] ] ---:-]-=-]~]]

]] ]]]]

] ] ] ] ] ] ------------------:;-
]] ]] ]]
]] ]] ]]
] ] SemiGroup OrderedSet
] ] ] ] ]
] ] ] ] ]
] ] ] ] ]
] ] ] ] ]
] ] Monoid ]
]] ]]]]] ]

] ] ]]] ]]------------~ ]
]] ]]] ]] ]
]] ]]] ]] ]
]]]] ] ]] ]
] ] Group] OrderedMonoid
]]] ]] ]
]]] ]] ]
]]] ]] ]
]]] ]] ]
]]] ]] ]

AbelianGroup] BasedOrderedMonoid ]
]]] ]
]]] ]
]]] ]
] ] ] ]
Ring ]

]] ]] ]
]] ]] ]
] ] ] ] ]
] ] ] ] ]

IntegralDomain OrderedRing

Figure 5. Same diagram showing principal arrows

1 List of operations, where each operation is stored in the form:

( ( name signature) implementation predicate)

e.g.

( (EQUAL ( (Boolean) $ $» (ELT $ 6) true)

A statement like (ELT $ 6) above indicates that, in all domains satisfy
ing the format requirements of this category, the operation EQUAL is to
be found in element 6 of the vector. This is also expressed by saying
that 6 is the sequence number of EQUAL for this category.

The Alist model 11



Note that this is a change from the current implementation, in which
there is no "implementation" component, but instead EQUAL is represented
as

(EQUAL ( (Boolean) $ $)) true)

and the fact that it is implemented as element 6 of the vector is deduced
from its relative position in the list. The reasons for this change are
two-fold: one is that relative positions are dubious tools, especially
when one is merging lists (as Join must do), and the other is that we are
allowed other forms of implementations, such as macros or

( (unit ($ (UnitCorrAssoc $))) CAR true)

2 List of attributes. Since I do not fully understand attributes at the mo~

ment, I will only remark that I think we ought to decide whether we allow
operation names, operation signatures or both in the specification of at
tributes.

3 The LISP data structure' (Category)' (i.e. a list of one element, whose
car is the atom Category) . This is used to distinguish these vectors
from the representation of domains (see below) .

4 A list of "associated categories and domains". The CAR of this cell is a
list of all the principal ancestors of this category (excluding itself),
so that we can find our way back up the category graph efficiently. The
CADR of the cell is a list of all the fundamental ancestors of the cate
gory (again excluding itself), associated with the conditions that apply
to them and their sequence numbers in the vector (see below) . The pre
cise format is a list of triples, each triple being a three-list: (fun
damental ancestor, condition, sequence number). The CADDR of this cell
is a list of all the non-primitive(7) domains that are required by oper
ations defined on this category, such as Boolean (the result type of =)
or PrintBox (the result type of format). The format of this list is a
list of pairs of domain and slot number.

5 A list of all the parameters of the category, if it has any parameters.

6 et seq. Templates for all the operations, alternative views (corresponding
to fundamental ancestors), non-primitive domains and other items that any
domain looking like this category will have.

The above description may be more meaningful if it is compared with an exam
ple: Figure 6 on page 13.

(7) The question of when a domain is primitive, and hence is known by the sys
tem without any pointers to it being created, is one of implementation.
Currently (19/7/82) the domains Boolean and String are regarded as primi
tive, but performance reasons may force us to increase this list, adding,
say, Integer.

The Alist model 12



------------------------------------------------------------------------------
1----1-----------------------------------------------------1
1 I 1

1 0 I Name 1

1 I 1

1 1 (SemiGroup) I

1----1-----------------------------------------------------1
1 1 I
1 1 1 List of operations 1

1

(EQUAL «Boolean) $ $» true (ELT $ 6) 1

(format «PrintBox) $) true (ELT $ 7) 1

1 I (TIMES ($ $ $) true (ELT $ 8) 1

1----1-----------------------------------------------------1
1 I 1
1 2 I List of attributes 1

1

I 1 ( ( (associative "*) true)) 1

1----1-----------------------------------------------------1
1 1 1
1 3 1 ' (Category) , 1

1----1-----------------------------------------------------1
1 1 I
1 4 1 Associated categories and domains I

1
I 1 «Set) NIL ( (PrintBox .8)) ) 1
1----1-----------------------------------------------------1
1 1 I
1 5 I Parameters 1

1

1 1 NIL 1

1----1-----------------------------------------------------1
1 I TEMPLATES 1

1----1-----------------------------------------------------
1 1
I 6 1 (EQUAL «Boolean) $ $») true (ELT $ 6)
1----1-----------------------------------------------------
1 1
1 7 1 (format «PrintBox) $) true (ELT $ 7)
1----1-----------------------------------------------------
1 1
1 8 I NIL (will be filled in by PrintBox in domains)
1----1-----------------------------------------------------
1 1
1 9 I (TIMES ($ $ $)) true (ELT $ 8)
I 1
1----1-----------------------------------------------------

Figure 6. Layout of SemiGroup
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We also define, for each of the operations defined in that category, a se
quence number (as mentioned above, under item 1 of category layout). Sequence
numbers start at 6(8) , and are assigned under the following rules:

o For all operators defined in a category which it inherits from its immedi
ate principal ancestor, the same sequence numbers are assigned as in that
ancestor.

o If this category (A, say) is a non-principal extension of another named
category (9) (B, say), then that category (B) is assigned the next avail
able sequence number(10) These sequence numbers are stored in the CADR
of slot 4 of the vector representing the category (vide supra).

o All other operators(ll) are assigned the next available sequence numbers.

o All non-primitive domains that
are assigned the next available
in the CADDR of slot 4 of the
supra)

do not already have slots assigned to them
sequence number. These numbers are stored
vector representing the category (vide

This has the consequence that, if A is any principal ancestor of B, then all
the operations which B inherited from A have the same sequence number in A as
they do in B. Note that this is not true for non-principal ancestors. A fur
ther consequence is that, if A is any ancestor whatsoever of B, then B has a
(minimal) fundamental ancestor C such that all the operations which B inher
ited from A have the same sequence numbers in A as they do in C.

Category subsumption

There is one exception to the above rule about the assignment of sequence num
bers to non-principal ancestors quoted above. This was briefly discussed in
the footnote on page 14, and is taken up in more detail here. If B is a prin-

(8) These are LISP vector indices, and so agree with the illustration in Fig
ure 6.

(9) In fact, we need only consider the fundamental ancestors of A, by the ar
guments on fundamental ancestors outlined on page 10.

(10) There is one exception to this rule, when B is a principal extension of a
category already appearing in the representation of A. This case is known
as category subsumption, and is discussed later in this section, as "Cate
gory subsumption".

(11) This begs an interesting question: how do we decide if two operators are
the same or not. The obvious answer, that of disambiguating on the signa
ture, does not work for several reasons, and a more complex scheme seems
to be necessary. This is discussed at the end of this section, as "
Equivalence of operator definitions" on page 16.

The Alist model 14



15

cipal extension of a further category (C, say), which already appears in the
representation of A, then we can replace the representation of C in A by the
representation of B, and we do not need to generate a separate sequence number
for B. This case is known as category subsumption, and is illustrated by Fig
ure 7 and Figure 8 on page 16.

Set
(=,format)
] ] ] ]

] ] ] ]----------=-=-
] ] ] ]
AbelianGroup SemiGroup
(+,-,0) ] (*) ]]

] ] ]]]
]] -=-- ] Monoid
] ] (1)
] ] ] ]

Rng ]
] ] ]

]] -::------------]
]] ]
Ring

Figure 7. Category Subsumption - the tree: A simple example, showing
that the pointer to Monoid can subsume the pointer to SemiGroup
in the definition of the category Ring. The vectors are given
in Figure 8 on page 16.
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1---1------------------------
I 1 Rng
1---1------------------------
I 61
---1------------------------

71 format
---1------------------------

81 domain PrintBox
---1------------------------

9 +

10

Ring

format

domain PrintBox

+

11

12

13

a

SemiGroup

*

o
Monoid

*
14 1

Figure 8. Category Subsumption - the vectors: Showing the layout of the
vectors for Rng and Ring, especially how Monoid has subsumed
the slot of SemiGroup.

Theorem: The categories appearing in the representation of a category Care
precisely the fundamental ancestors of C.

Proof: By reductio. Let C be a minimal category for which the theorem as
serted is false (i.e. the theorem is true for all principal ancestors of C).
Let D be a category occurring in the representation of C, and let D' be a fun
damental ancestor of C which is also a principal descendant of D. Let C' be
the immediate principal ancestor of C. Then there are two cases:

1. D occurs in the representation of C'. Then either D' occurs in the repre
sentation of C', which contradicts the minimality of C, or it does not, in
which case it would subsume the definition of D.

2. D does not occur in the representation of C'. Then there is no point in
adding it as we move from C' to C, since D' is a principal descendant of
D.

Equivalence of operator definitions

Here we consider the question, raised briefly at the bottom of page 14, as to
when two operator definitions can be said to be equivalent. This is still a
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subject(12) deserving of study, and any remarks here will be very preliminary.
This is also known as operator subsumption.

Our general model is of two signatures (known as (1) and (2) below: We assume
that (1) already exists, and that (2) is a new definition we are comparing
with (1)) which mayor may not define 'equivalent' operations. There are two
type of operator subsumption that we ought to consider:

Output subsumption This occurs when the output of signature (2) is a subset of
the output of signature (1). An example of this is:

AbelianSemiGroup:Category == Set with
[operations] U+U: ($,$) -> $

"_U: ($,$) -> Union($,"failedU)

AbelianGroup:Category == AbelianSemiGroup with
[operations] "_": $ -> $

"_": ($,$) -> $
0: -> $

After these definitions, there are two binary '-' operations defined
on every Abe1ianGroup (there is also a unary '-', but this does not
concern us). The first one returns either an element of the struc
ture or 'failed', the second one always returns an element of the
structure. the first.

Input subsumption This occurs when one of the inputs in signature (1) is a
subset of the corresponding input in signature (2). An example of
this is:

SemiGroup:Category == Set with
[operations] U*U: ($,$) -> $

u**u: ($,PositiveInteger) -> $

Monoid:Category == SemiGroup with
[operations] 1: -> $

u**u: ($, NonNegativeInteger) _> $

Group:Category == Monoid with
[operations] inv: $ -> $

u**u: ($, Integer) -> $

Here there are three different definitions of ,**, on Groups - de
pending on whether the second argument is a positive integer, a
non-negative integer, or an arbitrary integer. But these sets are
not independent. Indeed, it is not clear which definition should be
invoked for x**2.

(12) BMT argues against any operator subsumption, for example, and believes
that two operator definitions are equivalent if, and only if, they are
identical. This is a plausible point of view, though not, as might be ex
pected, the author's.
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It is certainly possible to imagine two signatures which manifested output
subsumption and three separate occurrences of input subsumption, but I do not
see that this really complicates the problem.

Operator subsumption causes several distinct problems:

1. It is not clear to the compiler which definition should be invoked;

2. The user has to supply three different definitions for ,**, whenever he
defines a group, and two definitions of '-' whenever he defines an
AbelianGroup;

3. The various vectors and other data structures are longer than they need
be.

Clearly, what is required is that the system should determine that these defi
nitions really refer to the same conceptual operator, and arrange, in some
way, that the above problems are resolved. Determining that operator
subsumption has occurred should not be too difficult(13), but it is not clear
what the system can do about it.

In order to discuss this, we have to make a further distinction. Let A and B
be two types, with A a subset of B (whether for input subsumption or output
subsumption) . We say that A is a subset of B at the source level in this
case. It may further be the case that, in the implementation of the SCRATCH
PAD language, the representation of the types A and B are such that the ma
chine representations of A are a subset (with the same meanings attached) of
the representations of B. We say that A is a subset of B at the machine level
in this case. The definition of subsets at the machine level clearly depends
on the implementation of the system, and the illustrations we are about to
present therefore depend on the current implementation, and are subject to
change without notice.

1. PositiveInteger is a subset of NonNegativeInteger is a subset of Integer
at the machine level, because they are all represented as LISP integers.

2. The set Integer is a subset of the set RationalNumber at the source
but not at the machine level (in LISP370, at least). The integer
different internal representation from the rational 1, and the LISP
tion EQUAL will declare that they are not the same.

level,
1 is a
func-

3. For all types $, $ is a subset of Union($,"failed") at the machine level,
since the members of the latter are either a special gensym(14) or the
members of $.

(13) In principle. We currently do not have a syntax for declaring, for exam
ple, that the set PositiveInteger is a subset of the set Integer. It ap
pears that this will be necessary for other reasons, so I do not regard
this as a major stumbling block. In the current (81/08/29) system, ex
plicit LISP statements are used to make these declarations.

(14) The reason for a gensym is to hide this "failed" from any other "failed"s
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4. Unions where more than branch are not special quoted tags, such as

R == Union($,Record(quo:$,rem:$))

do not fall into the above paradigm. $ is indeed a subset of R at the
source level, but not at the machine level, since the members of R are re
presented as LISP dotted pairs, whose CAR is a tag stating what branch of
the union they belong to, and whose CDR is the actual value.

The reader may ask what this has to do with operator subsumption. The reason
is that we must recognise two kinds of operator subsumption:

Machine level subsumption is that subsumption (output, input or both) that
takes place when all the subset relationships involved are true at
the machine level.

Source level subsumption (by which we mean that source level subsumption that
is not also machine level subsumption) is that subsumption that
takes place when at least one of the subset relationships is only
true at the source level.

Subsumption can arise in several ways.

1. The subsumer can be an existing operator in a category, and the subsumee
is being added from a nonce category. This is the easiest case: the user
is specifying a redundant operation (and we can promptly forget all about
it) . The reason we never need to supply a definition (as contrasted with
other cases) is that, since the category was a nonce category, the only
time the operator can be referenced is in the scope of the current decla
ration, in which case the subsumer will do equally well.

2. The subsumer can be in the principal category, and the subsumee in a named
category being added as a non-principal ancestor. This, regrettably, is
not the same case as above, and we must distinguish between the cases of
machine-level and source-level subsumption, as is done below.

3. (Almost certainly the most common case). The subsumee exists in the prin
cipal ancestor, and some other category is supplying the subsumer. This
case also requires us to distinguish the two forms of subsumption, as is
done below.

If we have machine-level subsumption, then a trick is available to us: we can
re-use the same slot in the vector. The reason that this is possible is best
explained if we consider the example of output subsumption on page 17. We are
saying that a function satisfying the second signature for binary '-' can be
used to satisfy the first as well. And this is clearly possible from the de
finition of machine-level subsumption - the output types are equivalent as far
as the implementation is concerned.

that the user may be using as variables in his program. Early implementa
tions do not translate "failed" into a special gensym, for ease of debug
ging, but this should be regarded as temporary.
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Source level subsumption is a major problem, though. One might hope that one
could delete the subsumed function from the Alist (which indeed one can) and
not bother about that slot any more. Regrettably, that is not the case, and
this is illustrated by the following piece of output subsumption (though the
principles apply equally well to input subsumption) taken from a purely hy
pothetical piece of algebra system:

EuclideanDomain:Category == UniqueFactorizationDomain with
[operations] "/": ($,$) -> Record(q:$,r:$)

Field:Category == Join(EuclideanDomain,SkewField) with
[operations] "/": ($,$) -> $

While the field is being treated as a field there is no problem, but as soon
as we come to treat it as a EuclideanDomain we ask where the 'I' function for
this domain, regarded as a EuclideanDomain, lives. We can not just place the
'I' function from our field there, since that returns $, not Record(q:$,r:$).
The solution appears to be that the system will have to invent, from the
subsumer, a suitable definition for the subsumee, but I have no idea how that
can be done in general.

A related problem

In this section we discuss a question closely related to that of operator
subsumption, though the author has not seen sufficiently many instances where
this problem occurs that he feels able to characterise the relationship. This
problem crops up in the definition of Integer, which we can simplify, for the
purpose of illustrating the problem, to:

Ring:Category == Set with
[operations] "*": ($,$) -> $

1: -> $
"**": ($,Integer) -> $
"+": ($,$) -> $
0: -> $
"-". $ -> $
"-". ($,$) -> $
"*": (Integer,$) -> $

The problem here is that there are two definitions of *, both of which are, in
this particular case, the same, viz. (Integer, Integer) -> Integer. The user
clearly should not be expected to supply two definitions, so the system must
decide that the definition he supplies fits both templates.

TYPES OF OPERATIONS

A variety of operators can be defined on domains. In the conceptual model,
they are all on the same footing, and all live in the Alist. But in practise
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we need to distinguish the various types of operation, and for the purpose of
this paper we make the following distinctions:

Category constant operations are those that have the same definition(15) (by
which we mean that the same piece of LISP code is used) for all ele
ments belonging to that category. An example of this might be a
'max' function defined by means of

OrderedSet:Category == Set with
[operations] n<n: ($, $) -> Boolean

max,min: ($,$) -> $ where
max(x,y) if x > y then x else y
min(x,y) == if x > y then y else x

There are far more operations than one might think that have this
species of definition, for example all the UnitCorrAssoc selectors
fall into this category.

Category (varying) operations are those operations that exist in a (named)
category, but whose definitions depend on the domain in the cate
gory. A typical example is the function +, as in

AbelianSemiGroup:Category == Set with
[operations] n+n: ($,$) -> $

"_": ($,$) -> Union($,nfailed")

but also all operations that have a default(16) definition, as op
posed to a constant definition, also belong to this classification.

Domain-specific operations are those for which the compiler can determine the
definition at compile time, since there is no doubt as to which de-
finition is meant. Examples of this are 'oddp' in Integer,
, HornerEval' in UnivariatePolynomial, 'Determinant' in
DenseMatrix(17) and so on.

(15) This is similar to the idea of unique extensions in the ADJ terminology
[Goguen et al., 1978], where we can say that a new operator (and associ
ated axioms) defines a unique extension of a category C if, for every do
main D in C, there is a unique domain D' in C' (C with the operation and
associated axioms) such that the forgetful functor from C' to C maps D' to
D.

The ideas are not quite the same, though, since we may wish to implement a
uniquely defined operation (in the ADJ sense) by more than one operation
in the LISP sense, e.g. we may wish for more than one implementation of
exponentiation, even though there is only one possible definition.

(16) We currently have no syntax for these definitions, and probably ought to
invent one

(17) In one view of the world. It would also be possible to have a category
Matrix, into which both DenseMatrix and SparseMatrix were functors. In
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other operations fall into several classes.

1. Category varying operations from unnamed categories.
could be invoked by clauses such as

PoIRing(R:Ring with unitp: $ -> Boolean,
Var:OrdAbelianGroup): Algebra(R) with

These

and it is
Such op
clearly

not mat-

though no such code currently exists in our system,
not clear that we would really want to have such code.
erations have to be supported, since the Alist model
states that they exist, but it seems to me that it does
ter if access to such operations is slow.

2. Accidental operations. This category consists of requests for
operations that the user has no "right" to expect to exist, e.g.
if R is declared to be a Ring, the user may ask(18) :

if R has gcd: (R,R) -> R

There is no inherent reason why this gcd operation should exist,
and yet the Alist model demands that, if it exists, the state
ment should yield 'true', and the user should then be able to
access the 'gcd' function of R.

We note that the fourth type, the "other" operations, only make sense when one
is looking for an operation. When one is defining an operation, one always
knows which of the first three categories it falls into.

STRUCTURES OF DOMAINS

The conceptual model stated that a domain could be regarded, as least as far
as its operations are concerned, as an Alist. The true representation of a
domain, as adopted in our system, is similar in concept, inasmuch as a domain
is essentially represented as an Alist of the categories to which it belongs.

The word 'essentially' was used in the above paragraph because all that is
needed is the representations of all the fundamental ancestors of the
domain (19) D. So a typical element of the Alist representing the domain D,
whose fundamental ancestors are the Di, actually has a list of all the princi-

that case the function 'Determinant' would belong to the previous cate
gory.

(18) Or some similar syntax

(19) So far, we have not defined what we mean by the fundamental ancestors of
a domain. In fact, we are using the term merely as shorthand for "The
fundamental ancestors of the category consisting precisely of the domain".
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pal ancestors of Di in its CAR, and the vector corresponding to Di in its CDR.
Figure 9 on page 24 should make this description clearer.

It may seem that this is a major change from the structure described in previ
ous papers on the new algebra system [Jenks, 1979, Davenport & Jenks, 1980,
Jenks & Trager, 1981], but in fact the difference is one of outlook rather
than of implementation (and indeed did not occur to the author until this pa
per was partly written) .

The code to look up the vector corresponding to any named category to which
the domain belongs then looks like:

(LOokupDomain
(LAMBDA (Category DomainAlist)

(COND «NULL DomainAlist) NIL)
«(MEMBER Category (CAAR DomainAlist))

(CDAR DomainAlist))
("T (LookupDomain Category (CDR DomainAlist))) )))

The conceptual Alist for operations

We have described how the conceptual model of a domain is an Alist allowing
one to look up operations on it, and then explained how the implementation is
really something different, being essentially an Alist of category represent
ations. This poses the question: How do I actually look something up? This
is answered by something that we term the conceptual Alist for operations,
which is merely a means of answering this question.

The conceptual Alist is never actually constructed(20) but the system performs
(when all more subtle means have failed) a search having the same effect. We
refer to the various types of operator as defined under "Types of Operations"
on page 20.

1. Category constant operations, such as 'max', are to be found on the Alist
of the category for which they are defined. They will have an implementa
tion component of the form (%.SUBR.OrderedSet,max,3(21) . $), meaning that
the system is to implement max by applying that LISP function to the argu
ments for max and to $, the vector representing the domain from which max
came.

(20) , For reasons of efficiency. The system can perform the equivalent
search by using the Alist for the domain itself and also the Alist for all
the categories to which the domain belongs (though it need only consider
the fundamental ancestors of the domain.

(21) This unwieldy object represents a piece of compiled LISP code, and is
also called a bpi, standing for "binary program image."
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Figure 9. A domain in the category OrderedRing

2. Category varying operations, such as + in AbelianSemiGroup and all its de
scendants, can also be found in the Alist of the category in which they
were defined. Here the implementation will be of the form (ELT $ 8), in
dicating that element 8 of the vector representing the domain contains the
complete representation of that operator.

3. Domain-specific operations are to be found on the Alist of the domain it
self. They will have implementations of the same form as the category
constant operations themselves, viz ( bpiname . $).

This means that the conceptual Alist is the union of the
domain-specific operations and the lists of operations for all of the
ries to which this domain belongs. We note that it is sufficient to
the fundamental ancestors of the (possibly unnamed) category to which
main is declared to belong.

Vectors representing domains

list of
catego

consider
the do-

o Name of the domain (e.g. (Integer) or (Polynomial x R), where x and Rare
the arguments passed to the LISP function Polynomial that created this
domain). [Is this right? We might have (Polynomial x <monstrous Vector
representing a Polynomial domain with Matrix coefficients ... ». Perhaps,
though, this is better than the alternative, and we could arrange to
print this as (Polynomial x (Polynomial z (Matrix 2 (UnivariatePolynomial
y (ZModN 7»»)]

1 List of operations, where each operation is stored in the form:

( ( name signature) implementation predicate)

e.g.

( (Evaluate (R $ R» (Polynomial, Evaluate . $) .

A statement like (PolynomialEvaluate . $) above indicates that, in this
domain the operation Evaluate with this modemap is to be computed by ap-
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plying the LISP function Polynomial, Evaluate to the relevant arguments
and to the vector representing this domain, which serves as an environ
ment for that function. Note that, following the discussion under "The
conceptual Alist for operations" on page 23, this includes only
domain-specific operations.

2 List of attributes.

3 The LISP data structure representing the category whose shape this vector
has. This would typically be a list of one element, whose car is the
atom naming the category, but for a Module, say, it would be the more
complicated data structure (Module R), where R was the argument to the
category-instantiating function Module.

If, however, the immediate category to which this domain belongs is anon
ymous, then we will place here the structure representing the closest
named principal ancestor of this category. An example of this case aris
ing is:

ZModN<n:Integer ] n > 1>:
Join(QuotientObject(DifferentialRing,Integer),Finite) with
[assert] if prime?(n) then GaloisField

The reason for this is that it is not interesting to know that this do
main belongs to an anonymous category, whereas knowing that it is a
QuotientObject is more useful. Note that it is an extension of all its
principal ancestors (and only its principal ancestors), so that is the
data we place here.

4 A pointer to the Alist which "really" represents the domain.

5 A pointer to a vector holding all the local storage required by the do
main. Typical examples of such local storage are the cells

hi: Integer := n quo 2
10: Integer := hi - n + 1

required by ZModN.

6 et seq. Implementations for all the category varying operations and pointers
to vectors corresponding to other categories to which this domain be
longs, and other domains (such as PrintBox) required by operations for
this domain. 1 These are stored in the correct slots, as defined by
their sequence numbers (see page 11).

Items 0, 1, 2, 4 and 5 are EQ in the LISP sense between all vectors represent
ing the same domain. In the case of item 5, the local variables, this is for
more than simple reasons of space economy: since multiple such v€ctors can be
being manipulated at the same time, having only one place in which local vari
ables can live, which is shared by all the views, is essential. We note that
there are implications for an optimising compiler here - these variables are
shared as surely as variables in a FORTRAN COMMON block, and the shared values
must be updated every time a function is called.
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TYPE EQUIVALENCE IN SCRATCHPAD

ABSTRACT This chapter attempts to describe the various issues relating to type
equivalence in the SCRATCHPAD language, and finishes with some concrete rep
resentations. Throughout this paper, examples will be quoted in a variety of
syntactic notations, which should not be taken as part of the SCRATCHPAD lan
guage. In particular, no attempt has been made to harmonise quotations.

Definitions For the purpose of this chapter, two types are said to be equiv
alent if the SCRATCHPAD system treats them as being the same type. In partic
ular, it is possible to assign values from one type to an equivalent type
without any explicit coercions being necessary, or any warning messages being
generated. Note that this implies, at least naively, that all assignments
must be reversible, and so rules out a language in which integers may freely
be assigned to reals, but not the converse. To do otherwise seems to place us
in the ALGOL68 coercion mess.

This is to be contrasted with the concept of compatibility, by which we mean
that it is possible, by explicit coercion, or by compiler-supplied (but warned
about) conversion, to convert values from one type to another.

THE ISSUES

In this section, we attempt to give several examples, as they might arise in
SCRATCHPAD, of the type equivalence problem, in the hope that consistent an-

swers to these problems will answer the question "when are two SCRATCHPAD
types equivalent". We work in two sections: questions of principle and
questions of implementation, though the distinction between the two is cer
tainly not rigid.

Questions of Principle

Here we try to list some of the questions that any typed language should an
swer about its type equivalence algorithm.

Equivalence of named types

A named type is defined to be one to which a specific name has been assigned
by means of an == statement. In the following piece of code, is the assign
ment valid (as it stands)? (Term is assumed to be a pre-defined type, with no
complications)
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tl == List Term;
t2 == List Term;
x : tl;
y : t2;
y := x;

Equivalence of anonymous types

In contrast, an anonymous type is one to which no such explicit name has been
attached. This is a particularly important concept in a language in which
type expressions, such as "List Term" below, can occur. In the following
piece of code, is the assignment valid (as it stands)? (Term is, again, as
sumed to be a pre-defined type, with no complications)

x : List Term;
y : List Term;
y := x;

Relation between named and anonymous types

In the following piece of code, is the assignment valid (as it stands)?

t == List Term;
x : List Term;
y : t;
x := y;

Basic types

In the following piece of code, (22) is the assignment valid (as it stands)?

x : Integer;
y : Integer;
y := x;

(22) I know of no-one who would deny that it was valid, but there are sub
stantial implementation questions arising from the difference between this
and "Equivalence of anonymous types".
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Questions of implementation

In this section, we look at various questions that arise in the particular
context of SCRATCHPAD, which complicate, as well as motivate, the discussion
of data types.

Basic Types

In the SCRATCHPAD system, the internal representation of the type "Integer" is
the LISP structure (Integer), which causes, when instantiated(23) causes the
function Integer to be called, and to return a vector "representing" the type
Integer. Similarly, the internal representation of the type List Term is the
LISP structure (List Term), which causes the function List to be applied every
time List Term is instantiated, and to return a vector representing this type.

Thus, it is hard to see how we can differentiate "Equivalence of anonymous
types" on page 28 and "Basic types" on page 28. It could be argued, of
course, that this repeated instantiation is inefficient, but this issue is be
yond the scope of this discussion.

Named Types

No decision(24) has yet been made in the SCRATCHPAD system as to the imple
mentation of statements like tl == List Term. The obvious implementation is
as (SETQ tl (List Term)), but this would make "Equivalence of named types" on
page 27 behave exactly like "Equivalence of anonymous types" on page 28 .
Perhaps it ought to mark the resulting vector in some way with its "tl"-ness.

Passing types out

This is something that no previous language, that I know of, really imple
ments, but several SCRATCHPAD algorithms are going to want to return a member
E of some domain D, and the nature of that domain is determined at run-time,

(23) a run-time operation, in the sense that, every time the piece of code
i : Integer
j : Integer
i+j

is executed, the function Integer is called.

(24) That the author is aware of.
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though it will (and, one hopes, can be guaranteed by the type-checker) to lie
in some category.

This causes nasty scope problems, as can be seen by considering

tl == List Term;
x : tl;
y := Fred x;
if x = y then

where Fred
tl == List Term;
z : tl
z;

and we ask if the two tl are the same or not.

A similar problem would arise if we allowed "own" types, or some way of keep
ing types between invocations of a program.

Uniform semantics

This relates to the problem of compiled and interpreted code. We want the
same actions to take place in one, and, in particular, if we decided that
"Equivalence of named types" on page 27 was invalid, but "Equivalence of anon
ymous types" on page 28 was valid, we would not want the compiler to reject
"Equivalence of named types" but the interpreter to accept it because, after
it had processed all the declarations, all it had associated with x was List
Term, and it had forgotten that this came from tl, and was not to be confused
with the List Term that came from t2.

Information hiding

It is generally accepted that one of the major principles of an abstract data
type language, such as SCRATCHPAD aims to be, is "information hiding" in the
following sense: in the body of the code

FreeModule(R:Ring,S:OrderedSet)
add

[representations]
Term == Record(k:S,c:R ] c # 0)
Rep == List Term
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an object declared (explicitly or implicitly) as a member of FreeModule is
equivalent (25) to one declared as List Term, but outside the scope of this
representation no such equivalence applies.

The "ZMod?" problem

BMT has raised the question of a ZMod? type, which would be useful in imple
menting Hensel's Lemma, and analogies of this could be used for power series
domains etc. While this domain does not appear to have been fully thought
out, it would have "state", since it would know to what precision it was ex
pected to compute (say modulo 729 or 2143), and there would be a function for
changing the state, so that

D == ZMod?;
x,y : D;
x := 500;
y := 500;
D. setprec (729) ;
x + y; [returns 271]
D.setprec(2143);
x + y; [returns 1000]

would work. This system works fairly well with a name-equivalence view (i.e.
one in which "Equivalence of named types" on page 27 to "Relation between
named and anonymous types" on page 28 are illegal, but in a structure equiv
alence view of the word we have problems, because we must ask whether we in
clude the internal state of the domain when comparing structures.

If we do, then the compiler has to know what the internal state is, and this
means running the program, and, in general, makes the general type-equivalence
problem undecidable.

But, if we ignore the state of the domain when comparing, we arrive at the
following situation:

(25) This need not be the case. It could be that they were merely compatible,
and that explicit (or compiler-supplied) coercions were required. Taking
this position solves some problems, but either makes the code look much
more ugly or complicates the type question, since, having decided that two
types are not equivalent, the compiler must then ask if they are implic
itly coercible.
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D1,D2 == ZMod?;
x : D1;
y : D2;
D1.setprec(729);
D2.setprec(81);
x .= 500; [really is 500]
y := x; [becomes 14]
x .= y; [is still 14]

where we have lost precision, and the type-checker can tell us nothing about
it.

The top-level interpreter

While the top-level interpreter for SCRATCHPAD is not written, we know that it
will follow previous designs in trying to maintain a common domain of computa
tion, using calls to RESOLVE etc. to assist in this. If "Equivalence of anon
ymous types" on page 28 is invalid, then it will have to maintain some form of
caching for domain structures to ensure that it never instantiates the same
domain more than once, else the user will see a "type mismatch" error that he
did not expect. Not only this, but this caching must apply at all levels of
the domain tree, not merely at the top level.

Implicit parametrisation

It is possible for a module to create, and export, a structure which is im
plicitly parametrised. An example of this is provided by

IntegralDomain:Category == Ring with
[operations] unitNormal: $ -> UnitCorrAssoc

UnitCorrAssoc == Record(unit:$,canonical:$,associate:$)

where a piece of code that instantiates an IntegralDomain may later call the
function unitNormal on an element of it, thus ending up with an object of type
UnitCorrAssoc. But this object is really parametrised by the $ of
IntegralDomain, and it is certainly the case that the following code is ille
gal:

x : Integer;
x := -2
y : Polynomial<t> Rational;
y := 3*t+4;
unitNormal(x) = unitNormal(y)

despite the fact that, superficially, we are comparing objects of type
UnitCorrAssoc.
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The answer to this, it seems, must be to parametrise the type UnitCorrAssoc
with the type of the particular IntegralDomain it refers to, so that
unitNormal(x) would have type UnitCorrAssoc(Integer), while unitNormal(y)
would have type UnitCorrAssoc(Polynomial(t,Rational)). Whether the system
does this behind the user's back or whether the user should have written

IntegralDomain:Category == Ring with
[operations] unitNormal: $ -> UnitCorrAssoc($)

UnitCorrAssoc($) == Record(unit:$,canonical:$,associate:$)

is largely a matter of taste: the present author would vote for the second al
ternative at the moment.

This does have a disadvantage, though, inasmuch as, for consistency, one would
have to write

[representations]
Term(R,S) == Record(k:S,c:R ] c # 0)
Rep == List Term(R,S)

instead of

[representations]
Term == Record(k:S,c:R ] c # 0)
Rep == List Term

in the functor FreeModule. The real reason why UnitCorrAssoc needs to be
parametrised, while Term does not, is that the type UnitCorrAssoc is (implic
itly) exported from IntegralDomain whereas, at least in current implementa
tions, Term is not exported from FreeModule. This question seems to require
further study.

PREVIOUS WORK

Here we look at a small amount of the previous work that has been done on
questions of type equivalence, noting that there is a substantial literature
on the subject, with little standardisation of vocabulary.

The "Russell" camp

Demers et al. [1978] consider the following PASCAL fragment

type t = integer;

var x

var y

x := 0
y := x

integer;

t;
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and ask whether or not it is well-formed, i.e. whether or
mitted. They point out that the PASCAL report [Jensen &
comment on this issue, while EUCLID [Lampson et al.,1977]
valid and Alphard [Wulf et al.1976] would not.

not y := x is per
Wirth, 1975] does not

would consider it

Demers et al. lop. cit.] incline to the view that it is not valid, though the
author finds it somewhat hard to follow their reasoning. They argue that the
program fragment quoted above should be equivalent to:

procedure p( type t with (del, :=)

var x

var y

x := 0
y := x
end p;

p(integer)

integer;

t;

and, in this context, the assignment is clearly illegal.

"Pascal" and sons

Welsh et al. [1977] discuss this matter in the context of clearing up some am
biguities in PASCAL, and consider the following example:

type T array [1 .. 10] of INTEGER

var A,B: array [1 .. 10] of INTEGER

C: array [1 .. 10] of-rNTEGER

D: T;
E: T;

In this context they consider two possible definitions of equivalence, as fol
lows:

Name equivalence. "Two variables are considered to be of the same type only if
they are declared together (as A and B) or if they are declared using the same
type identifier (as D and E)." "Thus A, C and D all have different types."
They add that "primitive types are specified using type identifiers, so two
variables will have the same type if they are both declared INTEGER."

Structural equivalence. "Two variables are considered to be of the same type
whenever they have components of the same type structured in the same way."
All five above have the same type. This gives rise to two sub-definitions of
structural equivalence, (26) which I shall call Structural equivalence with
selectors and Structural equivalence without selectors The difference arises
when one considers the following piece of code:

(26) Ichbiah et al. [1979, pp. 4-5,4-6] produce eight different elaborations
of structural equivalence.
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var F: record T,U: REAL end;

G: record V,W: REAL end;

and ask if F and G have the same type. Structural equivalence with selectors
would say that they do not, since the names of the selectors are different,
while structural equivalence without selectors would regard them as having the
same type.

There appears to be little support for structural equivalence without selec
tors in the literature, and we shall not discuss it further; assuming "struc
tural equivalence" to mean "structural equivalence with selectors". selectors
in the literature, and we shall not discuss it further; assuming

We should note that ADA [Ichbiah et al., 1979, p.4-2] chooses name equivalence
in the following form: "Each type definition introduces a different type".

EUCLID [Lampson et al., 1977, p.31] chooses structural equivalence (with pro
vision for information hiding, as discussed in "Information hiding" on page
30) in the following words: "A type identifier is an abbreviation for its de
finition. After all such abbreviations have been removed, two types are the
same if their definitions look the same. However, a module type, or any type
exported from a module, is considered to be different from any other type".

Summary. The literature divides essentially into two: name equivalence (in
which "Equivalence of named types" on page 27 to "Relation between named and
anonymous types" on page 28 are invalid, but "Basic types" on page 28 is
valid) and structural equivalence (in which all four are valid) .

POSSIBILITIES FOR SCRATCHPAD

Here we discuss the various proposals that have been suggested, with varying
degrees of formality, for the SCRATCHPAD language.

Structural equivalence

This is a very simple proposal, akin to the EUCLID implementation
mark quoted above), and suggests that we implement equivalence of
by asking if the two data types "look" the same. Thus all that
in the vector implementation of domains, is to compare the first
the vectors, which will be LISP structures of the form (Integer),
(Polynomial x (Integer)) etc.

(see the re-
data types

is required,
elements of
(List Term),

It implies that the compiler would have to de-reference structures like

t1 == List Term;
x : t1;

in order to ensure that x was "really" a List Term, rather than a t1.
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It also has slight problems with the information hiding mentioned "Information
hiding" on page 30, inasmuch as, if the two lists do not compare, one has to
see if one is a valid (i.e. in scope) representation of the other.

A major problem with this approach is that, the following declarations, such
as might be made in the course of a factorisation package,

type SquareFreeFactorisation: List Polynomial;

type PrimeFactorisation: List Polynomial;

var x

var y

SquareFreeFactorisation;

PrimeFactorisation;

provide no assistance from the type-checker, since it thinks that
SquareFreeFactorisation and PrimeFactorisation are short-hand for the same ob
jects.

Name equivalence.

This, too, appears a very simple process (akin, this time, to the ADA imple
mentation): we compare the "names" of types, so that, at compile time, the
compiler compares tl and t2 (using EQ), or (List Term) and (List Term) [get
ting different results in case "Equivalence of anonymous types" on page 28,
since they are two different, though EQUAL, lists]. This has the drawback
that, at least naively, "Basic types" on page 28 would also appear illegal,
since the two instantiations of (Integer) would appear different. It also has
slight problems with "The top-level interpreter" on page 32.

A somewhat different interpretation is required in interpreted code, since we
must ensure that the interpreter retains the tl-ness of x in code such as
"Equivalence of named types" on page 27. Though I do not recall this proposal
being made before, it seems that we would need to reserve an extra slot in
vectors for the name of the object, which would be tl in the case of

tl == List Term;
x : tl;

and some unique(27) identifier in the case of

x : List Term;

and possibly in the case of

x : Integer;

(27) This could either be a "gensym" or an integer returned by a function
guaranteed never to return the same integer twice. It appears, from dis
cussion with various LISP/370 people, that the integer approach would
probably be much more efficient.

Type equivalence in SCRATCHPAD 36



"EQ" equivalence

BMT has made this proposal, that equivalence of types be determined by the two
vectors that represent them being EQ (in the usual LISP sense), as opposed to
EQUAL. In the case of compiled code, we would then check identifiers, and t1
(in the scenario of "Equivalence of named types" on page 27) is not EQ to t2.
This would obviate the necessity for the "unique identifier" mentioned above
in the case of List Term, but would prevent two Integer instantiations from
being the same. This could be by-passed by a system in which functions like
Integer were massaged only to compute a result once, and deliver the same re
sult whenever they were called. This would not, however, seem to solve the
"information hiding" problem of "Information hiding" on page 30, unless addi
tional checks were made after the EQ failed.

JHD's proposal

This proposal, which has gradually solidified after looking at the other pos
sibilities, is as follows:

1. Two named types are only equivalent if the names are the same (i.e.
"Equivalence of named types" on page 27 is illegal);

2. Two anonymous types are equivalent by the rules of structural equality
(with selectors), thus making "Equivalence of anonymous types" on page 28
and "Basic types" on page 28 legal;

3. An anonymous type is never equivalent to a named type (i.e. "Relation be
tween named and anonymous types" on page 28 is illegal);

4. If the above rules state that the two types are inequivalent, then a check
is made to see if one is the representation (in scope) of the other.

This is implemented by planting a name field in every vector (as discussed for
name equivalence), but this field is left NIL for anonymous types, so that
(List Term) can be implemented in LISP as (List (Term», but t1 == List Term
is implemented as

(SETQ t1 ((LAMBDA (Z) (PROGN (SETELT Z 2 "t1) Z» (List Term») .

This seems, naively, to the author to solve the problems of "Questions of im
plementation" on page 29 (though not at no cost):

o "Basic Types" on page 29 is solved since all instantiations of Integer
will have the name NIL, and will so be equivalent.

o "Passing types out" on page 29 is still somewhat of a problem, but we can
solve these scope problems the way we solve other ones: by prefixing the
SCRATCHPAD name with a description of its level before making it into a
LISP name, as in Integer,Plus,l.
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o Since named types retain their names at run-time, while anonymous types
are EQUAL at compile-time and at run-time, it can be hoped that the seman
tics of compiled and interpreted code agree (as requested in "Uniform se
mantics" on page 30).

o As with all these schemes, we still need a mechanism to ensure that,
within a module, its data-types can see their representation (see "Infor
mation hiding" on page 30). Outside the module there is no problem, since
(Polynomial x (Integer» is not equal to (List (Term», and this inequal
ity will persist at run-time. Rule (4) above will need to be build into
the type-checker, and it is well to recognise that fact.

o "The "ZMod?" problem" on page 31 is solved by our reliance on name equiv
alence for named types, since, in order for it to make sense to have a
ZMod? construct around, it has to be named to allow one to refer to its
setprec function.

o Since the top-level interpreter will be constructing anonymous types, all
the types it constructs (of the same structure) will be equivalent, which
should ensure that the naive user sees what he expects.

o The problem of implicit parametrisation must be dealt with in one of the
ways suggested in "Implicit parametrisation" on page 32.

Against this must be balanced the fact that this proposal is a compromise be
tween the two main camps of name and structure equivalence. While it appears
to have the advantages of both, it may later turn out also to have the disad
vantages of both.
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INNARDS OF THE SCRATCHPAD SYSTEM

Introduction: Here we attempt to describe some of the internal workings of
the system, especially those parts which the author considers others may have
difficulty with. This means that the list is closely related to the list of
things the author himself had difficulty with.

THE LISP ITERATORS.

In this section we describe the form in which the iterators are implemented
the YKTLISP implementation of SCRATCHPAD, and not those of the LISP/370 imple
mentation. The reason is that the YKTLISP conversion has just been made, and
it was an attempt to define this that lead to the present (28) codification.
The LISP/370 implementation is supposed to provide the same facilities, but
this may not always be the case, especially when it comes to the finer points
of what is wrapped round the user's code.

REPEAT and COLLECT

There are two(29) basic iterators provided by the iteration package, COLLECT
and REPEAT The difference between them is precisely the difference
MAP CAR and MAPC: COLLECT returns a (useful) value, while REPEAT (in
plest form) does not. In what follows we will generally concentrate,
plicity, on REPEAT, and let the reader generalise to COLLECT.

The general form of REPEAT is given by Figure 10 on page 41.

between
its sim
for sim-

(28) This section was written 19th. September, 1981. The author believes that
changes may have been made between that date and the date that this foot
note was written (15th. July, 1982.

(29) There is also the DO macro, in terms of which the others are defined.
This macro is also used for bootstrapping the definitions of REPEAT and
COLLECT. However, its specification is obscure, and the macro should not
be called directly by users.
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(REPEAT
(IN X L1)
(STEP I 1 1 100)
(ON Y L2)
(SETELT X I Y»

1----------------------------------------------------------------------------
1 (REPEAT
1 <iterators>
1 <body»
1

I such as:
I
I
I
I
I
1

1

1 Figure 10. The REPEAT Construct
1----------------------------------------------------------------------------

A wide variety of iterators are supported, and these lead to great variations
in the nature of the code produced. However, some common principles apply.
All these macros can be regarded as expanding into the following structure:

(PROG(30)
(variable bindings)
initialisation statements

Label
iterator-related statements
(SEQ (EXIT body»

more iterator-related statements
(GO Label»

This has the following consequences:

1. An EXIT(31) within the body will cause that iteration through the loop to
terminate, and the next iteration to begin. Note that the value quoted in
the EXIT is ignored. This can be compared with the ITERATE statement
found in many modern languages (e.g. REX, except that no provision is made
for controlling loops other than the innermost one). In the case of a
COLLECT, the value is not added to the list being collected.

2. A RETURN(32) within the body causes the entire loop to terminate, and the
value of the entire REPEAT or COLLECT statement is that quoted in the RE
TURN statement. This can be compared with the LEAVE statement found in
many modern languages (e.g. REX, except that no provision is made for con
trolling loops other than the innermost one) .

(30) REPEAT in fact generates a LAMBDA, but this is inconsequential, since
PROG is, in fact, merely a macro for LAMBDA anyway. COLLECT generates two
nested PROGs, but the difference is again immaterial.

(31) Unless masked by an inner SEQ or PROG, of course.

(32) Unless masked by an inner PROG, of course.
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3. The bound variables of the iteration are bound by the iteration, and
therefore can not be referred to outside the loop, nor can they affect
other variables outside the loop.

We show (in Figure 11 on page 43 and Figure 12 on page 44 ) some actual exam
ples of simple REPEAT and COLLECT statements now, so that the reader can get
some feel for the code. These are precisely as generated by the Yorktown LISP
system, except that the names of GENSYMmed variables have been changed to
(lower-case) mnemonic names.

The various iterators supported by the macro are:

IN

ON

STEP

(IN A B) causes the variable A to run over the various members of
the list B in turn, so that its successive values are (CAR B), (CADR
B), (CADDR B) A is bound by the iteration, but the initial
value of B is evaluated outside the iteration, and so is not af
fected by any other bindings the iteration may cause. This means
that the following piece of code does the 'right' thing, though the
author would not recommend it as an example of clear programming:

(SETQ A "(1 2 3 4»
(SETQ N 1)
(REPEAT (IN A (REVERSE A»

(SETQ N (PLUS N A»)

(ON A B) works exactly like (IN A B) except that A takes on succes
sive tails of B, so that its values are B, (CDR B) , (CDDR B),
It stops as soon at it reaches an atomic value, so one can guarantee
that A is always a pair. The remarks about variable bindings made
under IN also apply to ON.

(STEP I initial increment final) makes I take all the values 'ini
tial', 'initial+increment', 'initial+2*increment' ... that are not
greater than 'final', or, in the case that the increment is(33) a
negative integer, not less than 'final'.

If 'final' is omitted the loop will run for ever (unless terminated
by a RETURN statement, of course). The value of 'initial' is evalu
ated precisely once, outside the scope of the loop. 'Increment' and
'final' are evaluated every time their values are needed, and these
evaluations take place inside the loop, and so see all the bindings
of the loop. Hence the following code will step I through the tri
angular numbers (though, again, it is not recommended as good pro
gramming practice) :

(33) At macro-expansion time. This could be regarded as a deficiency in the
macros, and they probably ought to be altered to produce generalised code
in the event that they can not determine the sign of the increment at com
pile time. However the current state is that described.
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1----------------------------------------------------------------------------1
1 (REPEAT (IN A B) (SETQ V (CONS A V»» 1

1 becomes 1

I ( (LAMBDA (Blist A) I
I (SEQ 1

1 Label 1

I (COND I
I ( (OR (ATOM Blist) (PROGN (SETQ A (CAR Blist» NIL» I
I (SEQ (RETURN NIL» ) ) I
I (SEQ (EXIT (SETQ V (CONS A V»» I

(SETQ Blist (CDR Blist»
(GO Label) ) )

B
NIL

1

I
I
1

1

Figure 11. An example of REPEAT: with the actual body of the loop 1

I underlined. 1

1----------------------------------------------------------------------------1

(REPEAT (STEP J 1 1 100)
(STEP I 1 (ADD1 J»
(PRINT (LIST J 'th triangular number is ' I»)

UNTIL (UNTIL x) will cause the loop to stop as soon as x (which is evalu
ated inside the environment of the loop) becomes true.

WHILE (WHILE x) is a synonym for (UNTIL (NOT x»

EXIT (EXIT(34) x) states that the value of REPEAT is to be x, rather than
NIL. When used with COLLECT, it causes the collection to be skipped
for that iteration.

SUCHTHAT (SUCHTHAT x) says that the body of the loop should only be executed
when x is true. It is equivalent to replacing the body with (COND
(x body». A good example of its use is:

(COLLECT (IN A L)
(STEP I 1 1)
(SUCHTHAT (PRIMEP I»

A)

for selecting those elements of a list that occur in prime-indexed
positions.

(34) Not to be confused with the LISP statement EXIT. Perhaps this one ought
to be renamed VALUE, or some other keyword, especially since this state
ment does not cause an exit, merely states what to do when an exit is
taken.
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----------------------------------------------------------------------------
(COLLECT (IN A B) (LIST A)))
becomes
(PROG (Answer)

(SETQ Answer NIL)
(RETURN

( (LAMBDA (Blist A)
(SEQ

Label
(COND

( (OR (ATOM Blist) (PROGN (SETQ A (CAR Blist)) NIL))
(SEQ (RETURN (NREVERSEO Answer))) ) )

(SEQ (EXIT (SETQ Answer (CONS (LIST A) Answer))))

) )

(SETQ Blist (CDR Blist»)
(GO Label) ) )

B
NIL

1

1

I
1

1
Figure 12. An example of COLLECT: with the actual body of the loop and 1

1 the RETURN statement that yields the result underlined. 1

1----------------------------------------------------------------------------1

The REDUCE statement

The REDUCE statement is closely connected with the iterators described above.
The general form of the REDUCE statement is

(REDUCE operator axis list)

such as

(REDUCE PLUS 0 "(1 2 3 4))

which will add up all the members of the list. The following reduction allows
us to reduce all cases of reduction to the case of zero-axis (which is, almost
certainly, the most common case) :

(REDUCE operator axis list)
is equivalent to
(COLLECT (IN U list)

(REDUCE operator axis-1 U))

In general, REDUCE generates code to iterate down a list, applying the opera
tor to the partial result and the next term. However, the macros are clever
in the case of reducing over a collected list, as can be seen in Figure 13 on
page 45, and the list is never actually created.

One result of this cleverness is that the semantics of EXIT and SEQ, as de
fined on page 41, are altered. They now become the following:
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----------------------------------------------------------------------------
(REDUCE APPEND 0 (COLLECT (IN A B) (LIST A))))
becomes
(PROG (Answer)

(SETQ Answer NIL)
(RETURN

( (LAMBDA (Blist A)
(SEQ

Label
(COND

( (OR (ATOM Blist) (PROGN (SETQ A (CAR Blist)) NIL))
(SEQ (RETURN Answer)) ) )

(SEQ (EXIT (SETQ Answer (APPEND Answer (LIST A)))))

) )

(SETQ Blist (CDR Blist))
(GO Label) ) )

B
NIL

1

1

1

1

I
Figure 13. An example of REDUCE: With the answer-producing code I

1 underlined. 1

1----------------------------------------------------------------------------1

1. An EXIT(35) within the body will cause that iteration through the loop to
terminate, and the next iteration to begin. Note that the value quoted in
the EXIT is ignored.

2. A RETURN(36) within the body causes the entire loop to terminate, and the
value of the entire REDUCE statement is that quoted in the RETURN state
ment.

THE IMPLEMENTATION LANGUAGE - SOME REMARKS ON THE SYNTAX

This section concentrates on the language in which the system is implemented
(known as the BOOT language), and in particular on some of the pitfalls it
has. These are, of course, subject to change (rectification?) without notice,
but perhaps this list will be useful to those who do not obtain the results
they expect.

Functions of no arguments.
ments, GENSYM ()

GENSYM() applies the function GENSYM to no argu
applies the function GENSYM to one argument - NIL.

"is true" The construct 'x is true' translates into "T at the LISP level.

'=>' The use of the '=>' (thenexit) symbol can be confusing. In the code

(35) Unless masked by an inner SEQ or PROG, of course.

(36) Unless masked by an inner PROG, of course.
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atom x =>
t:=

isSymbol x => compSymbol(x,e)
<x,primitiveType x or return nil,e>

convert(t TO m)

the high-lighted '=>' is subordinate to the ' :=' on the previous
line, and so the value of a call to compSymbol is assigned to the
variable 't'.

"if" and indenting The rules for indenting the "if" statement are that any
thing subordinate to the predicate of the 'if' must be indented at
least as far as the first character of the operand, so that

.. if a and b
and c then ..

is erroneous, while

.. if a and b
and c then ..

has the desired effect.

not The not operator in the boot language has a very low precendence.
In particular, its precedence is less than that of '=>', so that

not( (CAR sig) = (CAR pattern» => nil

parses as

not( «CAR sig) = (CAR pattern» => nil

and thus exits under the same circumstances as

(CAR sig) = (CAR pattern) => nil

which is probably not what the programmer expected.

SOME DEBUGGING AIDS

The TRACEUT system

TRACEUT LISP K offers(37) a convenient tool for debugging. By doing a:

(37) This description was copied from JENKS MAIL 81/09/14 01:44:24
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MAKEPROP (fn, II /TRANSFORM, II (tr t1 ... tn))

followed by:

(TRACE fn) or (It fn)

the n arguments al, ... ,an of fn are transformed by t1, .. . ,tn, the result of fn
by tr. In all transforms, * denotes the expression, NIL is used if the argu
ment is not to be printed. As an example, TRACEUT contains:

(MAKEPROP "compFormWithModemap "/TRANSFORM II «DROPENV *) * * NIL *))

which causes arguments 1,2, and 4 to be printed out on call, argument 3 (the
environment) not to be printed, and the result transformed by DROPENV (which
simply drops the environment part of the result) before printed.

TRACEUT LISP K contains the triggers which cause the TRACE functions to act
specially as well as some suggested MAKEPROPs. Of course, you are free to make
your own private copy.
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