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1 Introduction

Many years ago (2007) I wrote a series of blog posts on Axiom, which you can still find at

http://bit.ly/1W3sO4L

These posts were among the first new material about Axiom for some time. Since then the
world of software has not stood still, and Axiom and in particular its forks have grown. So this
document is both a rewrite of my old introduction, and a brief look at some of the new, and
continuing, changes.

To start with, a bit of history1. Axiom started life as Scratchpad, which was a system
for numeric and symbolic computation, and developed from the early 1970’s at IBM. In the
1990’s the system was sold to the Numerical Algorithms Group and renamed Axiom. It was
never the commercial success than NAG had hoped, so was withdrawn from the market in
2001 and a bit later released as open-source. It has always had a small and devoted group of
developers and users, but it has never enjoyed the support of the Big Systems such as Maple and
Mathematica, or even MuPAD and Macsyma (now Maxima). Its use of strong typing requires a
slightly different mindset of computational thinking than for say Maple and Mathematica—and
indeed almost any other system—for which pattern matching provides the basis for much of the
symbolic algorithms. However, Axiom has significant strengths. For example it is currently the
only open-source system to provide a complete implementation of the Risch decision algorithm
for integration.

In about 2007, some of the developers, dissatisfied with what they saw as the slow growth of
the system, and the direction in which it seemed to be going, split off from Axiom and produced
two forks: FriCAS, and OpenAxiom. Of these two forks the first is the most viable, and indeed
is being actively developed. Already FriCAS differs from its parent in having a web notebook
interface, a web-based front-end to the documentation, and a greater library of special functions.
And several of the libraries have been enhanced. FriCAS retains most of its parent’s code, and
indeed most commands will run equally well on both Axiom and FriCAS and produce the same
output. But not all will. In order to bring some sense to the confusion of names, the term
“PanAxiom” has been proposed as an umbrella term for all of them. Then “Axiom” refers to
the original software, and the forks are referred to by their names.

Given the shared material between the systems though, I will use “Axiom” when referring to
generic material, as well as to material specific to the initial system, and “FriCAS” if referring
to matter specific to that fork.

1A more complete history can be found at http://www.axiom-developer.org/
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2 The basics

2.1 Obtaining Axiom/FriCAS

For Axiom first go to http://www.axiom-developer.org/ for a description and discussion,
and then go to http://www.axiom-developer.org/axiom-website/download.html to find and
download some binaries. Axiom works best under Linux. Under windows you have several
choices: you can run a native binary in console mode only, without graphics, or you can run
Axiom inside an X-windows server for Windows such as Xming. One interface for Axiom is to
use it as a session within the TeXmacs editor2. More recently, Axiom has been configured to run
in a Docker container: Docker allows lightweight virtualization and the Docker Virtual Machine
is a lightweight linux VM which can run within VirtualBox. This means that instead of installing
a complete Linux distribution in which to run Axiom, you just install a Docker VM.

FriCAS is found at http://fricas.sourceforge.net/; you can download binaries for sev-
eral systems, or if you prefer you can download the source code and compile it using any Lisp.
As with Axiom, FriCAS can run in TeXmacs. It also has some other interfaces, which will be
discussed later.

2.2 A note on Axiom and its forks

As mentioned earlier, owing to some disagreement among Axiom developers, the original Axiom
has spawned two forks: FriCAS, and OpenAxiom. From the users’ point of view, there is not
much to choose between the three. However, the development models and goals of the three are
very different:

Axiom “is intended to support educational and research objectives”, and aims to be very slow
and careful in its development, using literate programming, so the development done now
will still be useful and readable in 30 years time. Thus Axiom puts great stress on provable
correctness of algorithms, and readability of code. This can make adding new material
non-trivial.

FriCAS “will use lightweight development, allowing much faster evolution.” Also, FriCAS “add
hooks which make adding alternative user interfaces easier.” FriCAS aims to be more user
friendly than its parent, and in particular easier to extend.

OpenAxiom “aims at being the open source computer algebra system of choice for research,
teaching, engineering, etc.” It differs from its parent in technical details.

That being said, there has been quite a lot of development of FriCAS in particular over the past
seven or so years: its current developers include some of the best programmers from the initial
Axiom team. For example, FriCAS now has quite an extensive library of special functions, as
well as a web-based notebook interface, similar to the Sage notebook. The HyperDoc system
for managing documentation in a some clunky and old-fashioned (yet undeniably powerful) X-
windows system is being replaced with a slicker web interface.

The term “PanAxiom” is now used to mean either the original Axiom, or the user experience
of using any of its forks.

One very important aspect of Axiom is that it uses types extensively. Everything you do in
Axiom takes an input of one of the many types defined in Axiom, and produces an output of a
particular type. One of the greatest difficulties for the beginner (well, it was certainly hard for

2http://www.texmacs.org
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me!) is making sense of the types, and ensuring that your input type is commensurate with the
mathematics you are trying to do with it. But this is also one of Axiom’s greatest strengths.

3 Starting off

If you start Axiom or Fricas, let’s suppose in a console, you will be see some information on
the screen, and then be presented with a prompt, consisting of a number an an ascii arrow,
something like this:

Checking for foreign routines

AXIOM="/usr/local/lib/fricas/target/x86_64-unknown-linux"

spad-lib="/usr/local/lib/fricas/target/x86_64-unknown-linux/lib/libspad.so"

foreign routines found

openServer result 0

FriCAS Computer Algebra System

Version: FriCAS 2014-12-18

Timestamp: Sat Oct 10 19:29:56 EST 2015

-----------------------------------------------------------------------------

Issue )copyright to view copyright notices.

Issue )summary for a summary of useful system commands.

Issue )quit to leave FriCAS and return to shell.

-----------------------------------------------------------------------------

(1) ->

If you start Axiom instead of FriCAS you’ll see much the same as above, but with AXIOM instead
of FriCAS. There are a number of commands for interacting with the system environment; these
all begin with a right parenthesis. These can be ignored if you like, but in fact they are extremely
useful. In particular )set provides many functions for changing the appearance of the output;
these can be seen by entering )set output at the prompt.

But let’s start simply: Axiom can be used like a calculator:
(1) -> 2+3

5

Type: Positive Integer

(2) -> 17*42

714

Type: Positive Integer

(3) -> %/3

238

Type: Fraction Integer

(4) -> 4^7

16384

Type: Positive Integer

(5) -> 1/2 + 1/3 + 1/4 + 15
77

60
Type: Fraction Integer
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Axiom has all the standard functions:
(6) -> sin(%pi/8.0)

0.3826834323 6508977173

Type: Float

(7) -> sqrt(2.0)

1.4142135623 730950488

Type: Float

(8) -> log(3.0)

1.0986122886 681096914

Type: Float

(9) -> exp(%i*%pi/4.0)

0.7071067811 865475244 + 0.7071067811 865475244%i

Type: Expression(Complex(Float))

Note that %pi produces π, and %i the imaginary unit. Other constants include various
infinities, which I’ll talk about in a further post.

Note also that the Type given at the end of each computation can be quite long (and there
are many longer than these); there is the option to print instead abreviated versions:
(10) -> )set output abbreviate on

(10) -> exp(%i*%pi/4.0)

0.7071067811 865475244 + 0.7071067811 865475244%i

Type: EXPR(COMPLEX(FLOAT))

However, for the moment we shall stick with their full names.
(11) -> )set output abbreviate off

Note that Axiom, like most computer algebra systems, will attempt to give a result in closed
(symbolic) form. To force a floating point output, you need to include a floating point input,
or use the numeric function, or coerce your input to be of type Float. (I’ll discuss types and
coercion in a later post.)

Axiom has no trouble with integers of arbitrary size:
(11) -> 2^150

1427247692705959881058285969449495136382746624

Type: PositiveInteger

(12) -> sum(1/k,k=1..100

14466636279520351160221518043104131447711

2788815009188499086581352357412492142272
Type: Union(Expression Integer,...)

And Axiom can produce numeric output to arbitrary precision. The precision can be set
either in number of digits with the digits function, or by number of bits with precision.
Then the number of digits displayed can be set by any of outputFixed, outputFloating or
outputGeneral, all of which dispkay the output in slightly different ways. The last two com-
mands here are classic examples of “near integer” computations.
(13) -> digits(40);outputGeneral(40);

Type: Void
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(14) -> numeric(%pi)

3.1415926535 8979323846 2643383279 502884197

Type: Float

(15) -> sqrt(2.0)

1.4142135623 7309504880 1688724209 69807857

Type: Float

(16) -> exp(%pi*sqrt(163.0)

26253741 2640768743.9999999999 9925007259 76

Type: Float

(17) -> numeric (log(640320^3+744)/%pi)^2

163.0000000000 0000000000 0000000023 216778

Type: Float

Note that it is important to ensure that digits ≥ outputGeneral or else the last few digits
displayed will be nonsense:
(18) -> digits(5);outputGeneral(20); 1.0/3

0.3333339691 162109375

Type: Float

4 Algebra

Axiom variables are created using the “colon equals” method of many other computer languages,
and user defined functions with a double equals:
(19) -> a:=%pi/2

π

2
Type: Pi

(20) -> b:=2^(1/3)+4^(1/3)
3
√

4 +
3
√

2

Type: AlgebraicNumber

(21) -> p(x)==x^3-6*x-6

Type: Void

(22) -> p(b)

3
3
√

2
3
√

4
2

+ (3
3
√

2
2
− 6)

3
√

4− 6
3
√

2

Type: AlgebraicNumber

(23) -> expand(%)

0

Type: AlgebraicNumber

Expansion, factorization and simplification of all sorts of expressions can be accomplished
easily:
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(24) -> expand((x+2*y-3*z)^5

−243 z5 + (810 y + 405 x) z4 +
(
−1080 y2 − 1080 x y − 270 x2

)
z3

+
(
720 y3 + 1080 x y2 + 540 x2 y + 90 x3

)
z2

+
(
−240 y4 − 480 x y3 − 360 x2 y2 − 120 x3 y − 15 x4

)
z

+32 y5 + 80 x y4 + 80 x2 y3 + 40 x3 y2 + 10 x4 y + x5

Type: Polynomial Integer

(25) -> factor(%)

−(3z − 2y − x)3

Type: Factored Polynomial Integer

(26) -> simplify((x^9-1)/(x^3-1))

x6 + x3 + 1

Type: Expression Integer

(27) -> a:=((sin(x)^2-cos(x)^2)*tan(x)-sin(x)*tan(x)+cos(x))

/(tan(x)-sec(x))(
sin(x)2 − sin(x)− cos(x)2

)
tan(x) + cos(x)

tan(x)− sec(x)
Type: Expression Integer

(28) -> simplify(a)

−2 cos(x)2 + 1

Type: Expression Integer

Note that in the expansion of the multivariate polynomial above, Axiom treats the result as
a polynomial in one variable (in this case z), with the coefficients being expressions in the other
variables. We shall see later how to obtain a complete expansion, with no brackets.

Axiom has powerful algorithms to solve polynomial equations, systems of polynomials, and
linear system. There are in fact several different solve functions:

solve Basic solve function: will produce real solutions. The precision of the solution can be
adjusted by including an extra parameter

complexSolve The complex version of solve—will produce complex solutions, also with an
adjustable numerical precision

radicalSolve As its name implies, solutions in the form of radicals, if such can be found.

(29) -> radicalSolve(p(x)=0,x)[
x =

(
−
√
−3 + 1

)
3
√

4
2 − 4(√

−3 + 1
)

3
√

4
, x =

(
−
√
−3− 1

)
3
√

4
2

+ 4(√
−3− 1

)
3
√

4
, x =

3
√

4
2

+ 2
3
√

4

]
Type: List Equation Expression Integer

(30) -> digits(20);outputGeneral(20);

Type: Void

(31) -> solve(p(x)=0,1.0E-10)

[x = 2.8473221018 502954394]

Type: List Equation Polynomial Float

Note that we have asked for a precision of 10−10, but 20 digits of output. This means that
the last half of the output as given here may be discarded as incorrect. We would be better off
setting the precision to be no less than the number of output digits:
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(32) -> digits(30);solve(p(x)=0,1.0e-20)

[x = 2.8473221018 630726395]

Type: List Equation Polynomial Float

(33) -> outputGeneral(10);

Type: Void

(34) -> complexSolve(p(x)=0,1.0E-10)

[x = 2.847322102, x = −1.423661051− 0.283606001%i,
x = −1.423661051 + 0.283606001%i]

Type: List Equation Polynomial Complex Float

(35) -> radicalSolve([x^2-y^2=4,x*y=3],[x,y])[[
x =

(√
−13 + 2

)√
−
√

13− 2

3
, y =

√
−
√

13− 2

]
,[

x =

(√
13− 2

)√
−
√

13− 2

3
, y = −

√
−
√

13− 2

]
,[

x =

(√
13 + 2

)√√
13− 2

3
, y =

√√
13− 2

]
,[

x =

(
−
√

13− 2
)√√

13− 2

3
, y = −

√√
13− 2

]]
Type: List List Equation Expression Integer

(36) -> solve[x^2-y^2=4,x*y=3],1.0e-10)

[[y = −1.2671034983, x = −2.3676045437], [y = 1.2671034983, x = 2.3676045437]]

Type: List List Equation Polynomial Float

(37) -> solve([a*x+y-a*z=a^2,x+(a+1)*y-z=a+1,x+2*a*y-a*z=2-a],[x,y,z])[[
x =

a4 + 2 a3 − 4 a+ 2

a3 − 2 a+ 1
, y =

a

a2 + a− 1
, z =

2 a3 + 2 a2 − 4 a+ 1

a3 − 2 a+ 1

]]
Type: List List Equation Fraction Polynomial Integer

Note that solve will in general produce numeric solutions, unless the equations are linear.
When the precision is given, the list of variables need not be given explicitly, as, according to
the documentation: “The list of variables would be redundant information since there can be no
parameters for the numerical solver.”

5 Calculus

As you would expect, Axiom has some deep calculus abilities. For example, we can start with
every beginning student’s love, limits:
(38) -> limit((cos(x)-1)/x^2,x=0)

−1

2
Type: Union(OrderedCompletion Expression Integer,...)

(39) -> limit(x/sqrtx^2-1,x=%plusInfinity)

1

Type: Union(OrderedCompletion Expression Integer,...)
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Note here the use of %plusInfinity which is positive infinity. Axiom also has %minusInfinity.
Limits are also possible for complex variables, using complexLimit, and %infinity for complex
infinity.

After limits there are derivatives, implemented in Axiom with D. A third optional parameter
gives the order of the derivative:
(40) -> D(sqrt(x^2-1),x)

x√
x2 − 1

Type: Expression Integer

(41) -> D(sqrt(x^2-1),x,4)

−12x3 − 3

(x6 − 3x4 + 3x2 − 1)
√
x2 − 1

Type: Expression Integer

Integration is performed with the integrate command. Sometimes Axiom gets worried that
an integrand may have a pole in the region of integration, in which case the addition of the string
"noPole" will alleviate its fears:
(42) -> integrate(sqrt(x^2-3),x)(

6x
√
x2 − 3− 6x2 + 9

)
log
(√
x2 − 3− x

)
+ (−2x3 + 3x)

√
x2 − 3 + 2x4 − 6x2

4x
√
x2 − 3− 4x2 + 6

Type: Union(Expression Integer,...)

(43) -> integrate(sqrt(x^2-3),x=2..4,"noPole")(
24
√

13− 87
)

log
(
−8
√

13 + 29
)
− 264

√
13 + 948

32
√

13− 116
Type: Union(f1; OrderedCompletion Expression Integer,...)

(44) -> numeric(%)

4.8157033664 708774417

Type: Float

Axiom is the only open-source system which includes an implementation of the complete
Risch decision algorithm for systematic integration. This means that the example first given by
Manuel Bronstein:∫

x√
x4 + 10x2 − 96x− 71

dx

is managed easily by Axiom:
(45) -> integrate(x/sqrt(x^4+10*x^2-96*x-71),x)

− 1
8 ln

(
(x6 + 15x4 − 80x3 + 27x2 − 528x+ 781)

√
x4 + 10x2 − 96x− 71

− (x8 + 20x6 − 128x5 + 54x4 − 1408x3 + 3124x2 + 10001)
)

Type: Union(Expression(Integer),...)

Note also that FriCAS has a larger library of special functions than Axiom, so is able to
integrate a wider class of functions. For example, this integration:
(46) -> integrate(x*sin(x^3),x);

(47) -> normalize(%)

− 6
√
−1

4
Γ
(

2
3 , x

3 6
√
−1

3
)

+ Γ
(

2
3 ,−x

3 6
√
−1

3
)

6 6
√
−1

3

Type: Expression(Integer)
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Now for some series. There are several different commands for producing a power series,
of which series is the most general. The following three commands show some of the power
of Axiom’s type system. Since the first two outputs are of type UnivariatePuiseuxSeries,
arithmetic on them will produce an output also of that type. Thus the division command
produces the series for tan(x):
(48) -> s:=series(sin(x),x=0)

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 − 1

39916800
x11 +O(x12)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

(49) -> c:=series(cos(x),x=0)

1− 1

2
x2 +

1

24
x4 − 1

720
x6 +

1

40320
x8 − 1

3628800
x10 +O(x11)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

(50) -> s/c

x+
1

3
x3 +

2

15
x5 +

17

315
x7 +

62

2835
x9 +

1382

155925
x11 +O(x12)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

As an example of Axiom’s calculus power, let’s use the series command as a generating
function. In particular we shall construct the Euler polynomials En(x) defined by

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
.

So first create the series, and then extract a particular polynomial from it:
(51) -> E:=series(2*exp(x*t)/(exp(t)+1),t=0)

1 +
2x− 1

2
t+

x2 − x
2

t2 +
4x3 − 6x2 + 1

24
t3 +

x4 − 2x3 + x

24
t4

+
2x5 − 5x4 + 5x2 − 1

240
t5 +

x6 − 3x5 + 5x3 − 3x

720
x6

+
8x7 − 28x6 + 70x4 − 84x2 + 17

40320
t7

+
x8 − 4x7 + 14x5 − 28x3 + 17x

40320
t8

+
2x9 − 9x8 + 42x6 − 126x4 + 153x2 − 31

725760
t9

+
x10 − 5x9 + 30x7 − 126x5 + 255x3 − 155x

3628800
t10 +O(t11)

Type: UnivariatePuiseuxSeries(Expression Integer,t,0)

(52) -> coefficient(E,10)*factorial(10)

x10 − 5x9 + 30x7 − 126x5 + 255x3 − 155x

Type: Expression Integer

Finally, some differential equations. Note the use of the solve command—since the equation
to be solved is a differential equation, solve produces an appropriate solution. The main thing
to note here is the prior definition of the unknown function as an operator:
(53) -> y:=operator ’y;

Type: BasicOperator
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(54) -> de:=D(y(x),x)-y(x)-2*x^2

y′(x)− y(x)− 2x2

Type: Expression Integer

(55) -> solve(de=0,y,x=0,[1])

5ex − 2x2 − 4x− 4

Type: Union(Expression Integer,...)

(56) -> de2:=D(y(x),x)-x^2-y(x)^2

y′(x)− y(x)2 − x2

Type: Expression Integer

(57) -> seriesSolve(de2=0,y,x=0,[1])

1 + x+ x2 +
4

3
x3 +

7

6
x4 +

6

5
x5 +

37

30
x6 +

404

315
x7 +

369

280
x8 +

428

315
x9

+
1961

1400
x10 +O(x11)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Note that the solution method sometimes gives results which require a bit more work:
(58) -> de3:=D(y(x),x,2)-5*D(y(x),x)+6*y(x)-3*x^2-x-4*exp(2*x)

y′′(x)− 5y′(x)− 4e2x + 6y(x)− 3x2 − x
Type: Expression Integer

(59) -> sol:=solve(de3,y,x)[
particular =

(−24(ex)2 − 6x2 − 6x− 2)e3x − 24x(ex)3e2x + (9x2 + 12x+ 6)(ex)3

6(ex)3
,

basis = [e3x, e2x]
]

Type: Union(Record(particular: Expression(Integer),basis:

List(Expression(Integer))),...)

We can now try to simplify the particular solution:
(60) -> normalize(sol.particular)

(−24x− 24)(ex)2 + 3x2 + 6x+ 4

6
Type: Expression Integer

But notice that this particular solution still has an e2x term in it, which is part of the
homogeneous solution. Although this is not mathematically wrong, it may be confusing. So:
(61) -> normalize(sol.particular)+exp(2*x)/4)

(−48x− 45)(ex)2 + 6x2 + 12x+ 8

12
Type: Expression Integer

6 Lists and Matrices

Lists are a standard data structure in most CAS’s, and Axiom is no exception. A list is delineated
with square brackets, and can either be defined by listing it in full, or by iterating a function
over a range of integers.
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Given a list X, its i-th element is obtained with X.i. The first examples show the creation of
a list, and some operations on it:
(62) -> L:=[invmod(4*i,97) for i in 1..20]

[73, 85, 89, 91, 34, 93, 52, 94, 62, 17, 86, 95, 28, 26, 76, 47, 10, 31, 60, 57]

Type: List(Union(DoubleFloat,Integer))

(63) -> [L.(2*i) for i in 1..10]

[85, 91, 93, 94, 17, 95, 26, 47, 31, 57]

Type: List(Union(DoubleFloat,Integer))

(64) -> reduce(+,L)

1206

Type: PositiveInteger

(65) -> reduce(*,L)

18439941734502408142997068523520000

Type: PositiveInteger

(66) -> reduce(max, L)

95

Type: PositiveInteger

(67) -> map(x+->x^2+1,L]

[5330.0, 7226.0, 7922.0, 8282.0, 1157.0, 8650.0, 2705.0, 8837.0, 3845.0,
290.0, 7397.0, 9026.0, 785.0, 677.0, 5777.0, 2210.0, 101.0, 962.0, 3601.0,
3250.0]

Type: List(DoubleFloat)

There are a few things to note here:

• reduce extends a binary operation to a list, working its way through the list taking an
extra element each time.

• The final operation shows an example of an “anonymous function”; that is, a function
which hasn’t been given a name. The use of the +-> is useful when you want to use a
function “on the fly” or when you are only to going to need it once. The last operation
could have been done with

f(x)==x^2+1

map(f,L)

but that would require defining the function first.

Matrices are defined as lists of lists. All arithmetic is supported, and inversion, if the matrix is
square and non-singular.
(68) -> A:=matrix [[1,2,3],[4,5,6],[7,8,10]] 1 2 3

4 5 6
7 8 10


Type: Matrix(Integer)
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(69) -> B:=matrix [[-3,2,1],[4,-5,6],[-9,8,7]] −3 2 1
4 −5 6
−9 8 7


Type: Matrix(Integer)

(70) -> 2*A+3*B −7 10 9
20 −5 30
−13 40 41


Type: Matrix(Integer)

(71) -> A^3*B^2 −50712 43176 83952
−114342 97353 189264
−189300 161174 313336


Type: Matrix(Integer)

(72) -> B^-1
−83

72
− 1

12

17

72

−41

36
−1

6

11

36

−13

72

1

12

7

72


Type: Matrix(Fraction(Integer)

We can also obtain this last in numeric form:
(73) -> digits(6);outputGeneral(6);

Type: Void

(74) -> map(numeric,B^-1) −1.15278 −0.0833333 0.236111
−1.13889 −0.166667 0.305556
−0.180556 0.0833333 0.0972222


Type: Matrix(Float)

Axiom can do all the things you’d expect on matrices: find the determinant and permanent,
eigenvalues and eigenvectors, row-echelon form, null space. . . To finish here, a little example of
the Cayley-Hamilton theorem, and a solution of a set of linear equations, using matrices:
(75) -> cp:=characteristicPolynomial(B,x)

−x3 − x2 + 88x+ 72

Type: Polynomial(Integer)

(76) -> eval(cp,x=B) 0 0 0
0 0 0
0 0 0


Type: Polynomial SquareMatrix(3,Integer)

(77) -> solve(B,[-1,21,11])

[particular = [2, 1, 3],basis = [[0, 0, 0]]]

Type: Record(particular: Union(Vector Fraction Integer,’’failed’’),basis:
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List Vector Fraction Integer)

The output of the last command is given using Axiom’s Record data structure. To isolate
individual parts of this output, we refer to them by name. So to obtain the y value (the second
value), we would use
(78) -> %.particular.2

1

Type: Fraction(Integer)

Here the particular is a particular example of a solution, and basis the basis for the set of
solutions. This is an easy and elegant way of describing multiple solutions to a linear system.

7 Graphics

Moving right on, we now provide a brief introduction to Axiom’s graphics.
To obtain graphics, you need to run Axiom in Linux, or in windows within an X-windows

system, such as Xming. At the time of writing, there is no native windows graphics subsystem
for Axiom. You can also run FriCAS in a web-based notebook interface, using the Python system
Jupyter. This system provides typeset output, and also embedded graphics.

Having said that, Axiom’s graphics are sophisticated and powerful. In the plane you can
draw:

• graphs of functions y = f(x)

• parametric graphs (x(t), y(t))

• graphs defined algebraically p(x, y) = 0

• graphs defined with polar, bipolar, elliptic or parabolic coordinates

In three-dimensions, you can have

• surfaces defined by z = f(x, y)

• parametric space curves (x(t), y(t), z(t))

• surfaces defined parametrically (x(s, t), y(s, t), z(s, t))

• curves or surfaces defined with other coordinate systems, including cylindrical, spherical,
paraboloidal, conical

The command to produce any such graphic is draw. The graphic can be changed in numerous
ways, either by adding a parameter to the draw command, or by using the associated control
panel.

Here are two elementary examples: plane curves, one the graph of a cubic polynomial in
cartesian coordinates, the other a trisectrix given in polar coordinates. The commands for each
are
(79) -> draw(x^3-x,x=-1.5..1.5,title=="y=x^3-x");

Type: TwoDimensionalViewport

(80) -> tr(x)==4*cos(x)-sec(x)

Type: Void

13



Graph of a cubic polynomial Graph of a trisectrix

Figure 1: Graphs of plane curves in Axiom

(81) -> draw(tr(x),coordinates==polar,x=-1.5..1.5,toScale==true,

clip==[-1..3,-3..3],

title=="Trisectrix of Maclaurin, r = 4cos(t)-sec(t)")

Type: TwoDimensionalViewport

These curves are shown in figure 1.
In Axiom there are options for changing the colour of the curve, the number of data points

used to ploat the curve, whether those points are shown or now, and whether the axes are to be
shown, the plot drawn at scale, or with the x and y values clipped. These can be included in the
draw command as extra parameters.

Associated with any such graphic is a control panel, which can be displayed by clicking on
the graphic, and is shown in figure 2. The panel allows you to change the size and position of
the graphic, whether or not you want points shown (the default is to show points on the curve),
whether or not you want a bounding box, or axes, and many other adjustments.

Now for some three-dimensional surfaces, each one given in the form y = f(x, y). The
first is Scherk’s minimal surface, defined implicitly by ez cosx = cos y, or explicitly as z =
log(cos(y)/ cos(x)), and the second is the “monkey saddle” surface defined by z = x3 − 3xy2.
The commands to produce them are
(82) -> draw(log(abs(cos(y)/cos(x))),x=-1.5..1.5,y=-1.5..1.5);

Type: ThreeDimensionalViewport

(83) -> draw(x^3-3*x*y^2,x=-1..1,y=-1..1);

Type: ThreeDimensionalViewport

and they are shown in figure 3
As for 2D graphics, there is a control panel for 3D graphics, which allows you to change much

of the appearance of the graphic, as well as its orientation, as shown on the left in figure 4. A
second control panel, accessed from the first, allows you to change the bounds of the graphic,
and its perspective; this is shown on the right in figure 4.

It’s quite easy to build a complicated graphic by plotting several surfaces or shapes on the
one set of axes. The following commands illustrate how to set up a graphic consisting of two
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Figure 2: 2D control panel for Axiom graphics

interlocked tori:
(84) -> s:=create3Space()$(ThreeSpace DFLOAT)

3-Space with 0 components

Type: ThreeSpace DoubleFloat

(85) -> draw(curve(0,2*cos(t)+2,2*sin(t)),t=0..2*%pi,tubeRadius==0.3,space==s)

ThreeDimensionalViewport: “0”

Type: ThreeDimensional Viewport

(86) -> draw(curve(2*cos(t),2*sin(t),0),t=0..2*%pi,tubeRadius==0.3,

space==s, title=="Interlocked Tori")

ThreeDimensionalViewport: “Interlocked Tori”

Type: ThreeDimensional Viewport

and the result is shown in figure 5.
Finally, a couple of knots; first a trefoil knot, constructed parametrically with

x(t) = sin(t) + 2 sin(2t)

y(t) = sin(3t)

z(t) = cos(t)− 2 cos(2t)
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Scherk’s minimal surface Monkey saddle

Figure 3: Graphs of surfaces in Axiom
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Figure 4: 3D control panels for Axiom graphics

and a figure of eight knot with

x(t) = (2 + cos(4t)) cos(6t)

y(t) = (2 + cos(4t)) sin(6t)

z(t) = 2 sin(8t)

(I found these equations at http://www.infradead.org/~wmp/proj_knots.html.) They can
be written into Axiom as
(87) -> draw(curve(sin(t)+2*sin(2*t),sin(3*t),cos(t)-2*cos(2*t)),

tubePoints==19,t=0..2*%pi,tubeRadius==0.3,title=="Trefoil knot")

ThreeDimensionalViewport : ”Trefoil knot”

Type: ThreeDimensionalViewport

(88) -> draw(curve((2+cos(4*t))*cos(6*t),(2+cos(4*t))*sin(6*t),2*sin(8*t)),

tubePoints==19,t=-%pi..%pi,tubeRadius==0.3,title=="Figure of eight knot")

ThreeDimensionalViewport : ”Figure of eight knot”

Type: ThreeDimensionalViewport

and are shown in figure 6.

8 Types

So far, Axiom does most of the calculation we would expect of any computer algebra system.
But now we look at an aspect of Axiom which sets it apart from other systems: its use of types.
In Axiom, “type” is another word for “domain”, or “domain of computation”, which is a method

17



Figure 5: Interlocked tori

of organizing all objects. Objects include standard mathematical constructs such as matrices,
functions, integers, abelian groups; data structures such as lists and arrays; as well as constructs
built up from other constructs. Thus in Axiom we can create and use the type: “List of square
matrices of polynomials over integer fractions”. The type of the operand indicates the type of the
operation: a simple multiplication * will have a different interpretation depending on whether
the operands are integers, real numbers (floats), matrices, elements of a finite field, or many
other types.

There are three special symbols which are used when dealing with types:

:: This is used for converting from one type to another. In the form

object::type

it takes the object object and converts it to type type.

$ This means to take the operation as defined for objects of the given type. It is used in the
form

(operand1 operation operand2)$type

@ This means to choose the operation (and possibly convert the types of the objects, if needed)
so that the result is of the given type.

As examples of the use and misuse of these symbols, let’s investigate a modular power:

an mod p

Such operations form much of the basis of modern cryptography. Start by defining a prime p
and an exponent n:
(89) -> reseed(1)

Type: Void
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Trefoil knots Figure-of-eight knot

Figure 6: Knots in Axiom

(90) -> p:=nextPrime(randnum(10^10))

8537081929

Type: PositiveInteger

(91) -> n:=randnum(10^10

1840983108

Type: PositiveInteger

The use of reseed at the beginning ensures that if you try this, you will obtain the same random
numbers. Now we will attempt to compute the above modular power with a = 7:
(92) -> a:=7;

Type: PositiveInteger

(93) -> (a^n)@ZMOD(p)

3213930103

Type: IntegerMod(8537081929)

(94) -> (a::ZMOD(p))^n

3213930103

Type: IntegerMod(8537081929)

In each of these commands, the power operation is performed using its modular version,
which is both highly efficient and only uses small numbers. However:
(95) -> (a^n)::ZMOD(p)

will just hang, and produce no result, and possibly even cause Axiom to crash. This command
is actually asked Axiom to first compute a^n (which is a huge number), and then reduce that
number modulo p.

Here’s another example of type conversion, this time using polynomials over prime fields.
The abbreviation for the finite field of residues modulo a prime p is PF(p).
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(96) -> p:=1+x+x^2+x^3+x^4

x4 + x3 + x2 + x+ 1

Type: Polynomial Integer

(97) -> factor(p)

x4 + x3 + x2 + x+ 1

Type: Factored Polynomial Integer

(98) -> factor(p::POLY PF 5)

(x+ 4)5

Type: Factored Polynomial PrimeField 5

(99) -> factor(p::POLY PF 11)

(x+ 2)(x+ 6)(x+ 7)(x+ 8)

Type: Factored Polynomial PrimeField 11

(100) -> factor(p::POLY PF 19)

(x2 + 5x+ 1)(x2 + 15x+ 1)

Type: Factored Polynomial PrimeField 19

Notice that we needed to change the type of p to POLY PF p: that is, to Polynomials over the
Prime Field p. If we tried to write, for example

factor(p::PF 5)

we would obtain the error

Cannot convert the value from type Polynomial(Integer) to PrimeField

(5).

Now some examples with matrices:
(101) -> A:=matrix [[1,2,3],[4,5,6],[7,8,10]]1 2 3

4 5 6
7 8 10


Type: Matrix Integer

(102) -> A^(-1)
−2

3
−4

3
1

−2

3

11

3
−2

1 −2 1


Type: Matrix Fraction Integer

(103) -> (A::MATRIX PF 11)^(-1)3 6 1
3 0 9
1 9 1


Type: Matrix PrimeField 11

(104) -> (A::MATRIX PF 101)^(-1)50 54 30
95 88 71
4 33 8


Type: Matrix PrimeField 101
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(105) -> A*%1 0 0
0 1 0
0 0 1


Type: Matrix PrimeField 101

Note that again we had to give the full type of A. If we tried to convert A to type “PF 11”
Axiom would return an error message saying that the particular conversion is not possible.

Recall earlier on that an expansion of a multivariate polynomial treats the result as a poly-
nomial in one variable, whose coefficients are polynomials in the other variables:
(106) -> expand((x-2*y+3*z)^3

27z3 + (−54y + 27x)z2 + (36y2 − 36xy + 9x2)z − 8y3 + 12xy2 − 6x2y + x3

Type: Polynomial(Integer)

To obtain a “full” expansion, we have to use the DistributedMultivariatePolynomial

type, which is abbreviated as DMP:
(107) -> expand((x-2*y+3*z)^3)::DMP([x,y,z],INT)

x3 − 6xy2 + 9x2z + 12xy2 − 36xyz + 27xz2 − 8y3 + 36y2z − 54yz2 + 27z3

Type: DistributedMultivariatePolynomial([x,y,z],Integer)

Finally, some examples of “package calling”—calling a command with the same name (in this
case random) but from different packages. The first command requests a random integer; the
second a random residue from the prime field Z/31Z, then random element from the finite field
Z2[x]/(x6 + x+ 1), and a random square matrix over a prime field:
(108) -> random()$INT

26799862

Type: Integer

(109) -> random()$PF 31

7

Type: PrimeField(31)

(110) -> random()$FFP(PF 2,x^6+x+1

%A5 + %A3 + %A2

Type: FiniteFieldExtensionByPolynomial(PrimeField(2),?^6+?+1)

(111) -> random()$SQMATRIX(4,PF 31)
22 12 7 16
5 19 16 22
1 24 20 8
8 3 18 28


Type: SquareMatrix(4,PrimeField(31))

9 Programming

Axiom has a full and complete, and well-structured programming language. Rather than describe
it in detail, I’ll just make a few general remarks, and provide a few examples.

A simple function

Here’s an example of a simple program, to solve an equation numerically by the bisection method.
We implement the following algorithm:
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Require: function f(x), values a,b for which f(a)f(b) < 0, a tolerance ε
while |f(a)| > ε do

c = (a+ b)/2
if sgn(f(a)) = sgn(f(c)) then

a = c
else

b = c
end if

end while
return a

For this algorithm at least, the program is very similar in Axiom:

bisect(f,a,b,eps) ==

local c

while abs(f(a))>eps repeat

c:=numeric (a+b)/2

if sign(f(a))=sign(f(c)) then

a:=c

else

b:=c

return(a)

Note that for ease of exposition I’ve done no sign checking on the values of f(a) and f(b). This
little program can be saved in a file called bisect.input and read into Axiom with the command

)read bisect

And now it can be used:
(112) -> bisect(x+->x^5+x^2-1,0,1,1.0e-12)

0.8087306004 7929357097

Type: Float

Note the use of anonymous functions.
Axiom programs are made of blocks, which are groups of statements all with the same in-

dentation, or alternatively delineated with parentheses; the statements being separated with
semicolons. The above program could be entered as

bisect2(f,a,b,eps) == (while abs(f(a))>eps repeat (c:=numeric (a+b)/2;

if sign(f(a))=sign(f(c)) then a:=c else b:=c),return a)

This is equally correct, but less readable.
Axiom contains the usual programming constructs: loops with for and while, branching, and

recursion. The above program shows several of these.

An algebraic problem

If you factorize xn − 1 for a few values of n, each factor seems to have non-zero coefficients only
of 1 or −1. This might lead us to conjecture that this is the case for all n. We can write some
functions and programs to test this. First, the maximum coefficient of a polynomial:

maxCoeff(p) ==

reduce(max,map(abs,coefficients(p)))
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Next, the maximum coefficient taken over all factors of a polynomial:

maxFactCoeff(q) ==

reduce(max,[maxCoeff(nthFactor(q,j)) for j in 1..numberOfFactors(q)])

Finally, the “driver” program which simply lists all values of n for which the factorization of
xn − 1 contains a factor one of whose coefficients has an absolute value greater than 1:

testCoeff() ==

for k in 1.. repeat

if maxFactCoeff(factor(x^(k::PI)-1))>1 then print(k)

Put all these into a single file, called say maxFactor.input, read it into Axiom with
(113) -> )read maxFactor

and run it with
(114) -> testCoeff()

You will obtain the following values:

105

165

195

210

255

273

285

315

330

345

357

and so on, until either you hit CTRL-c to abort the program, or you hit your computer with
a heavy brick. (I suggest the first method).

This problem can be equivalently stated in terms of the coefficients of cyclotomic polynomials,
and in fact the sequence generated above is sequence A013590 in the Online Encyclopaedia of
Integer Sequences: “Orders of cyclotomic polynomials containing a coefficient >= 2.”

10 Documentation

Like all Computer Algebra Systems, Axiom has both online documentation, and various other
web pages devoted to its description.

HyperDoc

If you are using Axiom under linux, or under Windows with the Xming X-server, you will have
access to the HyperDoc help browser. Although this can look a little old-fashioned (in terms of
its widgets), it is extraordinarily powerful, and very useful. It contains:

• the complete text of the book ”Axiom: The Scientific Computation System” by Richard
Jenks and Robert Sutor (Springer, 1992), in a convenient hypertext format

• masses of examples
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• a useful search facility

• a browse system, where you can browse Axiom by commands, or libraries. For example,
you can find all the commands which apply to finite fields, what they do, and how they
can be used.

HyperDoc is started automatically when you start Axiom. Although HyperDoc can be used
as a stand-alone help browser, it connects with Axiom using a socket, so it can run Axiom
commands.

Figure 7 shows a couple of screenshots; one with graphics, one with algebra.

Graphics in HyperDoc Algebra in HyperDoc

Figure 7: Hyperdoc

Other help from within Axiom

If you only have a console based Axiom, then there is limited help available from within Axiom
itself. However, there are a few commands you can use to provide some information. Suppose,
for example, you wish to list all operations containing the string ”diff”. Then you enter

)wh op diff

which is an abbreviation for

)what operations diff

and receive the output

Operations whose names satisfy the above pattern(s):

diff difference differentialVariables differentiate exteriorDifferential
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mergeDifference setDifference symmetricDifference totalDifferential

To get more information about an operation such as differentiate,

issue the command

)display op differentiate

To list domains, categories or packages, you can write

)wh do diff

)wh ca diff

)wh pa diff

The command

)wh th diff

which is an abbreviation for

)what things diff

lists everything which contains the substring “diff”.
Now suppose we want to find out about the operation ”difference”:

)d op difference

which is an abbreviation for

)display operation difference

and which produces

There are 2 exposed functions called difference :

[1] (D,D1) -> D from D if D has SETAGG D1 and D1 has SETCAT

[2] (D,D) -> D from D if D has SETAGG D1 and D1 has SETCAT

If you want to find out what ”difference” actually does, without using HyperDoc, and from
within Axiom itself, you can’t.

However, a very handy command is show, which when applied to a domain lists all operations
defined on that domain. Here for exmaple, we find out about Cliiford alegbras, whose type has
abbreviation CLIF:

)sh CLIF

with output

CliffordAlgebra(n: PositiveInteger,K: Field,Q: QuadraticForm(n,K))

is a constructor

Abbreviation for CliffordAlgebra is CLIF

This constructor is exposed in this frame.

Issue )edit /usr/local/axiom/mnt/linux/../../src/algebra/CLIF.spad

to see source code for CLIF
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------------------------------- Operations -------------------------------

?*? : (%,K) -> % ?*? : (K,%) -> %

?*? : (%,%) -> % ?*? : (Integer,%) -> %

?*? : (PositiveInteger,%) -> % ?**? : (%,PositiveInteger) -> %

?+? : (%,%) -> % ?-? : (%,%) -> %

-? : % -> % ?/? : (%,K) -> %

?=? : (%,%) -> Boolean 1 : () -> %

0 : () -> % ?^? : (%,PositiveInteger) -> %

coerce : K -> % coerce : Integer -> %

coerce : % -> OutputForm dimension : () -> CardinalNumber

e : PositiveInteger -> % hash : % -> SingleInteger

latex : % -> String one? : % -> Boolean

recip : % -> Union(%,"failed") sample : () -> %

zero? : % -> Boolean ?~=? : (%,%) -> Boolean

?*? : (NonNegativeInteger,%) -> %

?**? : (%,NonNegativeInteger) -> %

?^? : (%,NonNegativeInteger) -> %

characteristic : () -> NonNegativeInteger

coefficient : (%,List PositiveInteger) -> K

monomial : (K,List PositiveInteger) -> %

subtractIfCan : (%,%) -> Union(%,"failed")

It seems that we can add, subtract, multiply and divide elements in a Clifford algebra, as
well as raising an element to an integer power. As well as other operations.

Local help outside Axiom

If you have a complete Axiom system, or have compiled it from scratch and also compiled the
documentation, you’ll find some useful files in the

/usr/share/doc/axiom-doc

directory, of which the most important and useful are:

rosetta.dvi This is the “Rosetta Stone” and provides a “collection of synonyms for various
operations in the computer algebra systems Axiom, Derive, GAP, Gmp, DoCon, Macsyma,
Magnus, Maxima, Maple, Mathematica, MuPAD, Octave, Pari, Reduce, Scilab, Sumit and
Yacas.” Without being comprehensive, it is nonetheless an incredibly useful document,
especially if you’re coming to a new CAS after experience with another.

book.dvi This is the Jenks/Sutor book, with additions—1136 pages! Not for printing!

bookvol1.dvi This is a Tutorial volume, and a very good starting place for learning about
Axiom. It exists also in printed form, available from lulu.com.

Online help

There is also some very good material online. First off is an xhtml version of the Jenks/Sutor
book, at http://axiom-wiki.newsynthesis.org/uploads/contents.xhtml

Complete pdf files of all Axiom user documentation are available at http://www.axiom-developer.
org/axiom-website/documentation.html This page also contains a link to the beginnings of
a new browser-based interface to the HyperDoc material.
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For tutorials, the best one in English is by Martin Dunstan, from as long ago as 1996, at
http://www.dcs.st-and.ac.uk/~mnd/documentation/axiom_tutorial.

There are some excellent tutorials in French, by Daniel Augot at http://www-rocq.inria.
fr/codes/Daniel.Augot/axiom_intro.pdf and by Christophe Conil and Quentin Carpent at
http://la.riverotte.free.fr/axiom.

Now - get out there and learn about Axiom!
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