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Abstract

In mathematics, the determinant of a skew-symmetric matrix can al-
ways be written as the square of a polynomial in the matrix entries. This
polynomial is called the Pfaffian of the matrix. The Pfaffian is nonva-
nishing only for 2n X 2n skew-symmetric matrices, in which case it is a
polynomial of degree n.
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2 Formal definition

Let A = {a; ;} be a 2n x 2n skew-symmetric matrix. The Pfaffian of A is defined
by the equation

s"n!
0ES2p

1 n
Pf(A)= Z sgn(o) H A5 (2i—1),0(2i)
i=1

where Sy, is the symmetric group and sgn(o) is the signature of o.

One can make use of the skew-symmetry of A to avoid summing over all
possible permutations. Let II be the set of all partitions of {1,2,...,2n} into
pairs without regard to order. There are (2n — 1)!! such partitions. An element
«a € II, can be written as

= {(ilajl)v (iQ,jQ)a M) (vajn)}
with i < ji and i1 < i9 < -+ < i,. Let
1 2 3 4 --- 2n
i1 J1 od2 J2 o Jn
be a corresponding permutation. This depends only on the partition o and
not on the particular choice of II. Given a partition a as above define

Ao = Sgn(ﬁ)aihh iz, jo =" " Qigjin
The Pfaffian of A is then given by
Pf(A) =) Aa

acll



The Pfaffian of a n x n skew-symmetric matrix for n odd is defined to be
Zero.

2.1 Alternative definition
One can associate to any skew-symmetric 2n x 2n matrix A = {a;;} a bivector
w = Z (2% €i A\ ej
i<j

where {el,e?,...,e?"} is the standard basis of R?". The Pfaffian is then
defined by the equation

1
—w" = Pf(A) et AeT AN
n

here w™ denotes the wedge product of n copies of w™ with itself.

2.2 Derivation from Determinant

The Pfaffian can be derived from the determinant for a skew-symmetric matrix
A as follows. Using Laplace’s formula we can write the determinant as

det(A) = (—1)P ay, Ay + (—1)PPPagdp + -+ (1) Pa,, Ay,

where A,; is the p, ¢ minor matrix of the matrix A. We further use Laplace’s
formula to note that

det(A[A;]) = |A]"

since this determinant is that of an n xn matrix whose only non-zero elements
are the diagonals (each with value det(A)) and [A;;] is a matrix whose i, jth
component is the corresponding ¢, 7 minor matrix. In this way, following a proof
by Parameswaran, we can write the determinant as,

@11 a2 -+ Qin
a21 Qa22 - G2np
det(A) = A, =
apl Ap2 - Qpp
The minor of
ail a2
az1 a2

would be A,,_5. With this notation
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Of course, it was only arbitrarily that we chose to remove the first two rows,
and more generically we can write

ArrAss - ArsAsr = Ars,rsAn

where A, s is the determinant of the original matrix with the rows r and
s, as well as the columns r and s removed. The equation above simplifies in the
skew-symmetric case to

Ars = Ars,rsAn

We now plug this back into the original formula for the determinant,

An = (—1)p+1ap1 AplﬁplAn+(71)p+2ap2 Ap21p2An+' . ~+(—1)”+papn Apn,pnAn

or with slight manipulation,

\/A_n p+1 ( aplm p27p2 +o 4+ (—1)"_1apn\/m )

The determinant is thus the square of the right hand side, and so we identify
the right hand side as the Pfaffian.

3 Identities

For a 2n x 2n skew-symmetric matrix A and an arbitrary 2n x 2n matrix B,

o Pf(A)? = det(A)

o Pf(BABT) = det(B)Pf(A)
o Pf(AA) = \"Pf(A)

o Pf(AT) = (-1)"Pf(A)



e For a block-diagonal matrix

A1®A2[A1 0 }

0 A
Pf(Al® A2) = Pf(A11)Pf(A2)

e For an arbitrary n x n matrix M:

0 M n(n—
Pf[MT 0 }:(—1)< D/2 det M

4 Applications

The Pfaffian is an invariant polynomial of a skew-symmetric matrix (note that
it is not invariant under a general change of basis but rather under a proper or-
thogonal transformation). As such, it is important in the theory of characteristic
classes. In particular, it can be used to define the Euler class of a Riemannian
manifold which is used in the generalized Gauss-Bonnet theorem.

The number of perfect matchings in a planar graph turns out to be the
absolute value of a Pfaffian, hence is polynomial time computable. This is sur-
prising given that for a general graph, the problem is very difficult (so called
#P-complete). This result is used to calculate the partition function of Ising
models of spin glasses in physics, respectively of Markov random fields in ma-
chine learning (Globerson and Jaakkola, 2007), where the underlying graph is
planar. Recently it is also used to derive efficient algorithms for some other-
wise seemingly intractable problems, including the efficient simulation of certain
types of restricted quantum computation.

The calculation of the number of possible ways to tile a standard chessboard
or 8-by-8 checkerboard with 32 dominoes is a simple example of a problem which
may be solved through the use of the Pfaffian technique. There are 12,988,816
possible ways to tile a chessboard in this manner. Specifically, 12988816 is the
number of possible ways to cover an 8-by-8 square with 32 1-by-2 rectangles.
12988816 is a square number: 12988816 = 36042). Note that 12988816 can be
written in the form: 2 x 18022 4 2 x 18022, where all the numbers have a digital
root of 2.

More generally, the number of ways to cover a 2n x 2n square with 2n? domi-
noes (as calculated independently by Temperley and M.E. Fisher and Kasteleyn
in 1961) is given by

A i wk
H H 4 cos? J + 4 cos?

. 2n+1 2n+1
j=1k=1

This technique can be applied in many mathematics-related subjects, for ex-
ample, in the classical, 2-dimensional computation of the dimer-dimer correlator
function in quantum mechanics.




5 History

The term Pfaffian was introduced by Arthur Cayley, who used the term in
1852: " The permutants of this class (from their connection with the researches of
Pfaff on differential equations) I shall term Pfaffians.” The term honors German
mathematician Johann Friedrich Pfaff.

6 Axiom code

I have hacked together an algorithm to compute a Pfaffian, using an algorithm of
Gunter Rote. Currently it’s only an .input script, but if it’s useful for somebody
else than myself, we could make it a little more professional.

Martin

(*)=

Jclear all

--S 1 0of 9
BO n == matrix [[(if i=j+1 and odd? j then -1 else _
if i=j-1 and odd? i then 1 else 0) _
for j in 1..n] for i in 1..n]

--S 2 of 9

PfChar (lambda, A) ==
n := nrows A
(n = 2) => lambda~2 + A.(1,2)
M := subMatrix(A, 3, n, 3, n)
r := subMatrix(A, 1, 1, 3, n)
s := subMatrix(A, 3, n, 2, 2)

p := PfChar(lambda, M)
d := degree(p, lambda)

w
Il

BO(n-2)

:= r*B

g := [(Cxs).(1,1), A.(1,2), 1]
if d >= 4 then

Q
]

B := M*B
for i in 4..d by 2 repeat
C := CxB
g := cons((Cxs).(1,1), g
g := reverse! g

Type: Void



res := 0
for i in 0..d by 2 for j in 2..d+2 repeat
c := coefficient(p, lambda, i)
for e in first(g, j) for k in 2..-d by -2 repeat
res := res + c * e * lambda”(k+i)

--R Type: Void
--S 3 of 9

--R Type: Void
--S 4 of 9

m:Matrix(Integer):=[[0,15], [-15,0]]

--R + 0 15+

--R (4 |

--R +- 15 0 +
--R Type: Matrix Integer

--S 5 0f 9
pfaffian m

--R Type: Polynomial Integer

--S 6 of 9
(a,b,c,d,e,f):=(3,5,7,11,13,17)
--R

--R Type: Positivelnteger

--S 7 of 9
ml:Matrix(Integer):=[[0,a,b,c]l,[-a,0,d,e],[-b,-d,0,f], [-c,-e,-f,0]]

--R + 0 3 5 7 +
--R | I
--R -3 0 11 13|



--R (7 |

--R -5 -11 0 171

--R | |

--R +-7 -13 - 17 0 +

--R Type: Matrix Integer

--S 8 of 9
mlans:=a*xf-b*xe+d*c

--R (8) 63
--R Type: Positivelnteger

--S 9 of 9
pfaffian mil

--R  Compiling function BO with type PositiveInteger -> Matrix Integer

-k (9) 63

--R Type: Polynomial Integer
--E 9

)spool

)1lisp (bye)
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