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Introduction

Categorical relativity employs a category con-

sisting of objects representing massive bodies

(observers) and morphisms (arrows) that rep-

resent the relative velocity of one body (target)

with respect to another (source).



Category Theory

Deals with abstract mathematical structures

and relationships between them. Categories

appear in most branches of mathematics and

have been employed in computer science and

mathematical physics. Category theory presents

a unified languange and set of concepts that

cross the boundries between many diverse and

initially distinct subjects. Categories were first

introduced by Samuel Eilenberg and Saunders

Mac Lane in 1945, in connection with algebraic

topology.

Instead of focusing on objects possessing a

specific structure, category theory emphasizes

the morphisms the structure-preserving pro-

cesses between these objects.

We don’t need much from category theory to

begin applying it to relativity!



Relative Velocity

Unlike Lorentz boosts, pairs of relative veloc-

ities may be composed (added) only if the

source of the first velocity matches the target

of the second. Composition of relative veloci-

ties is associative.

The categorical structure of relative velocities

matches our common intuition about velocity

and is equally applicable to Galilean Relativity.



Relativity

Minkowski introduced the concept of (binary)

relative velocity v in 1908 in the context of the

special Lorentz transformations.

Zbigniew Oziewicz with Darius Swierk (thesis)

considered addition of relative velocity in 1988.

Q = γ(P + v/c) (1)

for P, Q time-like 4-vectors (obsrvers) where

γ = −P · Q

Tamas Matolcsi (1993) Spacetime without

Reference Frames

Daniel Gottlieb (1997) http://arxiv.org/abs/q-

alg/9603024



Observers P and Q determine different Eu-

clidean subspaces

{u ∈ M |P · u = 0} 6= {u′ ∈ M |Q · u′ = 0} (2)

Inverse Velocity

v = Q/γ − P (3)

v′ = P/γ − Q (4)

v 6= −v′ (5)

Lorentz Boost (Matolcsi)

L(P, Q) · v′ = −v (6)

L(P, Q) · Q = P (7)



Addition (Matolcsi, Oziewicz)

w = R/γ − Q (8)

with γ = −Q · R
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All inner products are defined within Euclidean

subspace. Hyperbolic geometry is not neces-

sary (Oziewicz).


