Complex domain constructor done differently.
DirectProduct? lifts many operations from the underlying domain automatically.
Complex values are represented as conjugate pairs.
fricas
(1) -> <spad>
fricas
)abbrev domain CM ComplexManifold
ComplexManifold(R:Join(Field, RadicalCategory, TranscendentalFunctionCategory, Comparable)
) : Join(RadicalCategory, DirectProductCategory(2,R)) with
imaginary: () -> %
real: % -> R
imag: % -> R
conj: % -> %
norm: % -> R
arg: % -> R
coerce: % -> Complex R
== DirectProduct(2, R) add
-- represent as conjugate pair
Rep ==> DirectProduct(2,R)
per x ==> (x@Rep) pretend %
rep x ==> (x@%) pretend Rep
pair(x:R,y:R):Rep == directProduct vector [x,y]
dup(x:R):Rep == directProduct vector [x,x]
import List R
imaginary():% == per pair(1,-1)
real(x:%):R == (rep(x).1 + rep(x).2)/(2::R)
imag(x:%):R == (rep(x).1 - rep(x).2)/(2::R)
-- just swap
conj(x:%):% == per pair(rep(x).2,rep(x).1)
-- multiplication is interesting
(x:% * y:%):% == per pair( _
real(x)*rep(y).1 + imag(x)*rep(y).2, _
real(x)*rep(y).2 - imag(x)*rep(y).1)
norm(x:%):R == retract(x*conj(x))
iabs(x:%):R == sqrt norm x
abs(x:%):% == per dup iabs x
arg(x:%):R ==
-- does not work since we have no order
-- real(x)<0 and imag(x)=0 => pi()
(2::R)*atan(imag(x)/(iabs(x)+real(x)))
sqrt(x:%):% == per( sqrt(iabs(x))*pair( _
cos(arg(x)/(2::R)) + sin(arg(x)/(2::R)), _
cos(arg(x)/(2::R)) - sin(arg(x)/(2::R)) ) )
coerce(x:%):OutputForm == complex(real x,imag x)$Complex(R)::OutputForm
coerce(x:%):Complex(R) == complex(real x,imag x)</spad>
fricas
Compiling FriCAS source code from file
/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/5781501376748542802-25px001.spad
using old system compiler.
CM abbreviates domain ComplexManifold
------------------------------------------------------------------------
initializing NRLIB CM for ComplexManifold
compiling into NRLIB CM
****** Domain: R already in scope
****** Domain: R already in scope
****** Domain: R already in scope
processing macro definition Rep ==> DirectProduct(2,R)
processing macro definition per x ==> pretend(@(x,DirectProduct(2,R)),%)
processing macro definition rep x ==> pretend(@(x,%),DirectProduct(2,R))
compiling local pair : (R,R) -> DirectProduct(2,R)
Time: 0.02 SEC.
compiling local dup : R -> DirectProduct(2,R)
Time: 0 SEC.
importing List R
compiling exported imaginary : () -> %
Time: 0 SEC.
compiling exported real : % -> R
Time: 0 SEC.
compiling exported imag : % -> R
Time: 0 SEC.
compiling exported conj : % -> %
Time: 0 SEC.
compiling exported * : (%,%) -> %
Time: 0 SEC.
compiling exported norm : % -> R
Time: 0 SEC.
compiling local iabs : % -> R
Time: 0 SEC.
compiling local abs : % -> %
Time: 0 SEC.
compiling exported arg : % -> R
Time: 0 SEC.
compiling exported sqrt : % -> %
Time: 0 SEC.
compiling exported coerce : % -> OutputForm
Time: 0 SEC.
compiling exported coerce : % -> Complex R
Time: 0 SEC.
****** Domain: R already in scope
augmenting R: (OrderedSet)
****** Domain: R already in scope
augmenting R: (DifferentialRing)
****** Domain: R already in scope
augmenting R: (Evalable R)
****** Domain: R already in scope
augmenting R: (LinearlyExplicitOver (Integer))
****** Domain: R already in scope
augmenting R: (PartialDifferentialRing (Symbol))
****** Domain: R already in scope
augmenting R: (RetractableTo (Fraction (Integer)))
****** Domain: R already in scope
augmenting R: (RetractableTo (Integer))
****** Domain: % already in scope
augmenting %: (shallowlyMutable)
****** Domain: R already in scope
augmenting R: (Finite)
****** Domain: R already in scope
augmenting R: (OrderedAbelianMonoidSup)
****** Domain: R already in scope
augmenting R: (OrderedSet)
(time taken in buildFunctor: 84820)
;;; *** |ComplexManifold| REDEFINED
;;; *** |ComplexManifold| REDEFINED
Time: 0.10 SEC.
Cumulative Statistics for Constructor ComplexManifold
Time: 0.14 seconds
--------------non extending category----------------------
.. ComplexManifold(#1) of cat
(|Join| (|RadicalCategory|) (|DirectProductCategory| 2 |#1|)
(CATEGORY |domain| (SIGNATURE |imaginary| (%))
(SIGNATURE |real| (|#1| %)) (SIGNATURE |imag| (|#1| %))
(SIGNATURE |conj| (% %)) (SIGNATURE |norm| (|#1| %))
(SIGNATURE |arg| (|#1| %)) (SIGNATURE |coerce| ((|Complex| |#1|) %)))) has no
(|DirectProductCategory| NIL |#1|) finalizing NRLIB CM
Processing ComplexManifold for Browser database:
--->-->ComplexManifold(constructor): Not documented!!!!
--->-->ComplexManifold((imaginary (%))): Not documented!!!!
--->-->ComplexManifold((real (R %))): Not documented!!!!
--->-->ComplexManifold((imag (R %))): Not documented!!!!
--->-->ComplexManifold((conj (% %))): Not documented!!!!
--->-->ComplexManifold((norm (R %))): Not documented!!!!
--->-->ComplexManifold((arg (R %))): Not documented!!!!
--->-->ComplexManifold((coerce ((Complex R) %))): Not documented!!!!
--->-->ComplexManifold(): Missing Description
; compiling file "/var/aw/var/LatexWiki/CM.NRLIB/CM.lsp" (written 10 JAN 2025 01:45:09 AM):
; wrote /var/aw/var/LatexWiki/CM.NRLIB/CM.fasl
; compilation finished in 0:00:00.040
------------------------------------------------------------------------
ComplexManifold is now explicitly exposed in frame initial
ComplexManifold will be automatically loaded when needed from
/var/aw/var/LatexWiki/CM.NRLIB/CM
fricas
)show CM EXPR INT
ComplexManifold(Expression(Integer)) is a domain constructor.
Abbreviation for ComplexManifold is CM
This constructor is exposed in this frame.
67 Names for 103 Operations in this Domain.
------------------------------- Operations --------------------------------
#? : % -> NonNegativeInteger ?*? : (Integer, %) -> %
?*? : (PositiveInteger, %) -> % ?*? : (%, Integer) -> %
?*? : (%, %) -> % ?+? : (%, %) -> %
?-? : (%, %) -> % -? : % -> %
?=? : (%, %) -> Boolean D : (%, List(Symbol)) -> %
D : (%, Symbol) -> % 1 : () -> %
0 : () -> % ?^? : (%, PositiveInteger) -> %
annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> %
arg : % -> Expression(Integer) associator : (%, %, %) -> %
coerce : % -> OutputForm coerce : Expression(Integer) -> %
coerce : Fraction(Integer) -> % coerce : Integer -> %
coerce : % -> % commutator : (%, %) -> %
conj : % -> % copy : % -> %
differentiate : (%, Symbol) -> % empty : () -> %
empty? : % -> Boolean eq? : (%, %) -> Boolean
first : % -> Expression(Integer) imag : % -> Expression(Integer)
imaginary : () -> % index? : (Integer, %) -> Boolean
indices : % -> List(Integer) latex : % -> String
maxIndex : % -> Integer minIndex : % -> Integer
norm : % -> Expression(Integer) nthRoot : (%, Integer) -> %
one? : % -> Boolean opposite? : (%, %) -> Boolean
real : % -> Expression(Integer) recip : % -> Union(%,"failed")
retract : % -> Fraction(Integer) retract : % -> Integer
sample : () -> % sqrt : % -> %
unitVector : PositiveInteger -> % zero? : % -> Boolean
?~=? : (%, %) -> Boolean
?*? : (Expression(Integer), %) -> %
?*? : (NonNegativeInteger, %) -> %
?*? : (%, Expression(Integer)) -> %
D : (%, List(Symbol), List(NonNegativeInteger)) -> %
D : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> %
D : (%, (Expression(Integer) -> Expression(Integer))) -> %
D : (%, Symbol, NonNegativeInteger) -> %
?^? : (%, Fraction(Integer)) -> %
?^? : (%, NonNegativeInteger) -> %
any? : ((Expression(Integer) -> Boolean), %) -> Boolean
characteristic : () -> NonNegativeInteger
coerce : % -> Complex(Expression(Integer))
coerce : % -> Vector(Expression(Integer))
count : (Expression(Integer), %) -> NonNegativeInteger
count : ((Expression(Integer) -> Boolean), %) -> NonNegativeInteger
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
differentiate : (%, List(Symbol)) -> %
differentiate : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> %
differentiate : (%, (Expression(Integer) -> Expression(Integer))) -> %
differentiate : (%, Symbol, NonNegativeInteger) -> %
directProduct : Vector(Expression(Integer)) -> %
dot : (%, %) -> Expression(Integer)
elt : (%, Integer, Expression(Integer)) -> Expression(Integer)
elt : (%, Integer) -> Expression(Integer)
entries : % -> List(Expression(Integer))
entry? : (Expression(Integer), %) -> Boolean
every? : ((Expression(Integer) -> Boolean), %) -> Boolean
leftPower : (%, NonNegativeInteger) -> %
leftPower : (%, PositiveInteger) -> %
leftRecip : % -> Union(%,"failed")
less? : (%, NonNegativeInteger) -> Boolean
map : ((Expression(Integer) -> Expression(Integer)), %) -> %
max : (((Expression(Integer), Expression(Integer)) -> Boolean), %) -> Expression(Integer)
member? : (Expression(Integer), %) -> Boolean
members : % -> List(Expression(Integer))
more? : (%, NonNegativeInteger) -> Boolean
parts : % -> List(Expression(Integer))
plenaryPower : (%, PositiveInteger) -> %
qelt : (%, Integer) -> Expression(Integer)
reducedSystem : Matrix(%) -> Matrix(Expression(Integer))
reducedSystem : Matrix(%) -> Matrix(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Expression(Integer)),vec: Vector(Expression(Integer)))
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Integer),vec: Vector(Integer))
retract : % -> Expression(Integer)
retractIfCan : % -> Union(Expression(Integer),"failed")
retractIfCan : % -> Union(Fraction(Integer),"failed")
retractIfCan : % -> Union(Integer,"failed")
rightPower : (%, NonNegativeInteger) -> %
rightPower : (%, PositiveInteger) -> %
rightRecip : % -> Union(%,"failed")
size? : (%, NonNegativeInteger) -> Boolean
subtractIfCan : (%, %) -> Union(%,"failed")
Compare:
fricas
)show COMPLEX EXPR INT
Complex(Expression(Integer)) is a domain constructor.
Abbreviation for Complex is COMPLEX
This constructor is exposed in this frame.
114 Names for 167 Operations in this Domain.
------------------------------- Operations --------------------------------
?*? : (Integer, %) -> % ?*? : (PositiveInteger, %) -> %
?*? : (%, Integer) -> % ?*? : (%, %) -> %
?+? : (%, %) -> % ?-? : (%, %) -> %
-? : % -> % ?/? : (%, %) -> %
?=? : (%, %) -> Boolean D : (%, List(Symbol)) -> %
D : (%, Symbol) -> % 1 : () -> %
0 : () -> % ?^? : (%, Integer) -> %
?^? : (%, PositiveInteger) -> % ?^? : (%, %) -> %
acos : % -> % acosh : % -> %
acot : % -> % acoth : % -> %
acsc : % -> % acsch : % -> %
annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> %
asec : % -> % asech : % -> %
asin : % -> % asinh : % -> %
associates? : (%, %) -> Boolean associator : (%, %, %) -> %
atan : % -> % atanh : % -> %
basis : () -> Vector(%) coerce : % -> OutputForm
coerce : Expression(Integer) -> % coerce : Fraction(Integer) -> %
coerce : Integer -> % coerce : % -> %
commutator : (%, %) -> % conjugate : % -> %
convert : % -> InputForm convert : % -> Pattern(Integer)
cos : % -> % cosh : % -> %
cot : % -> % coth : % -> %
csc : % -> % csch : % -> %
differentiate : (%, Symbol) -> % exp : % -> %
factor : % -> Factored(%) gcd : List(%) -> %
gcd : (%, %) -> % generator : () -> %
imag : % -> Expression(Integer) imaginary : () -> %
inv : % -> % latex : % -> String
lcm : List(%) -> % lcm : (%, %) -> %
log : % -> % norm : % -> Expression(Integer)
nthRoot : (%, Integer) -> % one? : % -> Boolean
opposite? : (%, %) -> Boolean pi : () -> %
prime? : % -> Boolean ?quo? : (%, %) -> %
rank : () -> PositiveInteger real : % -> Expression(Integer)
recip : % -> Union(%,"failed") ?rem? : (%, %) -> %
retract : % -> Fraction(Integer) retract : % -> Integer
sample : () -> % sec : % -> %
sech : % -> % sin : % -> %
sinh : % -> % sizeLess? : (%, %) -> Boolean
smaller? : (%, %) -> Boolean sqrt : % -> %
squareFree : % -> Factored(%) squareFreePart : % -> %
tan : % -> % tanh : % -> %
trace : % -> Expression(Integer) unit? : % -> Boolean
unitCanonical : % -> % zero? : % -> Boolean
?~=? : (%, %) -> Boolean
?*? : (Expression(Integer), %) -> %
?*? : (Fraction(Integer), %) -> %
?*? : (NonNegativeInteger, %) -> %
?*? : (%, Expression(Integer)) -> %
?*? : (%, Fraction(Integer)) -> %
D : (%, List(Symbol), List(NonNegativeInteger)) -> %
D : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> %
D : (%, (Expression(Integer) -> Expression(Integer))) -> %
D : (%, Symbol, NonNegativeInteger) -> %
?^? : (%, Fraction(Integer)) -> %
?^? : (%, NonNegativeInteger) -> %
argument : % -> Expression(Integer)
characteristic : () -> NonNegativeInteger
characteristicPolynomial : % -> SparseUnivariatePolynomial(Expression(Integer))
complex : (Expression(Integer), Expression(Integer)) -> %
convert : % -> SparseUnivariatePolynomial(Expression(Integer))
convert : % -> Vector(Expression(Integer))
convert : SparseUnivariatePolynomial(Expression(Integer)) -> %
convert : Vector(Expression(Integer)) -> %
coordinates : (Vector(%), Vector(%)) -> Matrix(Expression(Integer))
coordinates : Vector(%) -> Matrix(Expression(Integer))
coordinates : (%, Vector(%)) -> Vector(Expression(Integer))
coordinates : % -> Vector(Expression(Integer))
definingPolynomial : () -> SparseUnivariatePolynomial(Expression(Integer))
derivationCoordinates : (Vector(%), (Expression(Integer) -> Expression(Integer))) -> Matrix(Expression(Integer))
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
differentiate : (%, List(Symbol)) -> %
differentiate : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> %
differentiate : (%, (Expression(Integer) -> Expression(Integer))) -> %
differentiate : (%, Symbol, NonNegativeInteger) -> %
discriminant : Vector(%) -> Expression(Integer)
discriminant : () -> Expression(Integer)
divide : (%, %) -> Record(quotient: %,remainder: %)
euclideanSize : % -> NonNegativeInteger
expressIdealMember : (List(%), %) -> Union(List(%),"failed")
exquo : (%, Expression(Integer)) -> Union(%,"failed")
exquo : (%, %) -> Union(%,"failed")
extendedEuclidean : (%, %) -> Record(coef1: %,coef2: %,generator: %)
extendedEuclidean : (%, %, %) -> Union(Record(coef1: %,coef2: %),"failed")
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
lcmCoef : (%, %) -> Record(llcm_res: %,coeff1: %,coeff2: %)
leftPower : (%, NonNegativeInteger) -> %
leftPower : (%, PositiveInteger) -> %
leftRecip : % -> Union(%,"failed")
lift : % -> SparseUnivariatePolynomial(Expression(Integer))
map : ((Expression(Integer) -> Expression(Integer)), %) -> %
minimalPolynomial : % -> SparseUnivariatePolynomial(Expression(Integer))
multiEuclidean : (List(%), %) -> Union(List(%),"failed")
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer,%)) -> PatternMatchResult(Integer,%)
plenaryPower : (%, PositiveInteger) -> %
principalIdeal : List(%) -> Record(coef: List(%),generator: %)
reduce : Fraction(SparseUnivariatePolynomial(Expression(Integer))) -> Union(%,"failed")
reduce : SparseUnivariatePolynomial(Expression(Integer)) -> %
reducedSystem : Matrix(%) -> Matrix(Expression(Integer))
reducedSystem : Matrix(%) -> Matrix(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Expression(Integer)),vec: Vector(Expression(Integer)))
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Integer),vec: Vector(Integer))
regularRepresentation : (%, Vector(%)) -> Matrix(Expression(Integer))
regularRepresentation : % -> Matrix(Expression(Integer))
represents : (Vector(Expression(Integer)), Vector(%)) -> %
represents : Vector(Expression(Integer)) -> %
retract : % -> Expression(Integer)
retractIfCan : % -> Union(Expression(Integer),"failed")
retractIfCan : % -> Union(Fraction(Integer),"failed")
retractIfCan : % -> Union(Integer,"failed")
rightPower : (%, NonNegativeInteger) -> %
rightPower : (%, PositiveInteger) -> %
rightRecip : % -> Union(%,"failed")
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)),"failed")
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
subtractIfCan : (%, %) -> Union(%,"failed")
traceMatrix : Vector(%) -> Matrix(Expression(Integer))
traceMatrix : () -> Matrix(Expression(Integer))
unitNormal : % -> Record(unit: %,canonical: %,associate: %)
Tests:
fricas
a:CM(EXPR INT) := 3
Type: ComplexManifold
?(Expression(Integer))
fricas
b:CM(EXPR INT) := -5
Type: ComplexManifold
?(Expression(Integer))
fricas
real(a)
Type: Expression(Integer)
fricas
norm a
Type: Expression(Integer)
fricas
norm b
Type: Expression(Integer)
fricas
ab:=a*b
Type: ComplexManifold
?(Expression(Integer))
fricas
real ab
Type: Expression(Integer)
fricas
imag ab
Type: Expression(Integer)
fricas
s1:=sqrt(a)
Type: ComplexManifold
?(Expression(Integer))
fricas
real s1
Type: Expression(Integer)
fricas
imag s1
Type: Expression(Integer)
fricas
)set break resume
s2:=sqrt(b)
>> Error detected within library code:
catdef: division by zero
Continuing to read the file...
real s2
Type: Expression(Integer)
fricas
imag s2
Type: Expression(Integer)
fricas
I:CM(EXPR INT) := imaginary()
Type: ComplexManifold
?(Expression(Integer))
fricas
real I
Type: Expression(Integer)
fricas
norm I
Type: Expression(Integer)
fricas
imag I
Type: Expression(Integer)
fricas
imag conj I
Type: Expression(Integer)
fricas
s3:=sqrt(I)
Type: ComplexManifold
?(Expression(Integer))
fricas
s3*s3
Type: ComplexManifold
?(Expression(Integer))
fricas
c1:=conj(a+b*I)
Type: ComplexManifold
?(Expression(Integer))
fricas
real c1
Type: Expression(Integer)
fricas
imag c1
Type: Expression(Integer)
fricas
norm c1
Type: Expression(Integer)
fricas
c1::Complex(EXPR INT)
Type: Complex(Expression(Integer))
fricas
sqrt %
Type: Complex(Expression(Integer))
fricas
s4:=sqrt(c1)
Type: ComplexManifold
?(Expression(Integer))
fricas
real s4
Type: Expression(Integer)
fricas
imag s4
Type: Expression(Integer)
fricas
s4*s4
Type: ComplexManifold
?(Expression(Integer))
fricas
%::Complex(EXPR INT)
Type: Complex(Expression(Integer))
fricas
normalize %
Type: Expression(Integer)
fricas
%::Complex(EXPR INT)::Complex(INT)
Cannot convert the value from type Complex(Expression(Integer)) to
Complex(Integer) .
Continuing to read the file...