Recenty in sci.math.symbolic there was a question if
This can be proved by an elementary argument. Below w show purely mechanical way based on cylindrical algebraic decomposition (CAD). fricas (1) -> rC := RealClosure(Fraction(Integer))
Type: Type
fricas pR := POLY(rC)
Type: Type
fricas -- Replace inequalies by differences of sides lp := [b^2 - (a - c)^2,
Type: List(Polynomial(Integer))
fricas -- Do CAD
cd := cylindricalDecomposition(lp::List(pR)
)$CylindricalAlgebraicDecompositionPackage(rC)
Type: List(Cell(RealClosure(Fraction(Integer))))
fricas -- If implication is false, Type: List(Cell(RealClosure(Fraction(Integer))))
fricas sp3 := [samplePoint(ce) for ce in cd3]::List(List(Fraction(Integer)))
Type: List(List(Fraction(Integer)))
fricas vll := [map(p +-> eval(p, Type: List(List(Polynomial(Fraction(Integer))))
fricas vlq := vll::List(List(Fraction(Integer)))
Type: List(List(Fraction(Integer)))
fricas good := true
Type: Boolean
fricas -- Loop to check validity of formula at each sample point
for vl in vlq repeat
if vl(1) > 0 and vl(2) > 0 and vl(3) < 0 and vl(4) < 0 then
good := false
Type: Void
fricas print good Type: Void
Let us explain this a bit more. CAD for list of polynomials |
![\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{-{{c}^{2}}+{2 \ a \ c}+{{b}^{2}}-{{a}^{2}}}, \:{-{{b}^{2}}+{{a}^{2}}}, \:{{{c}^{2}}-{{b}^{2}}-{2 \ a \ b}-{{a}^{2}}}, \: \right.
\
\
\displaystyle
\left.{{{c}^{2}}-{{b}^{2}}+{2 \ a \ b}-{{a}^{2}}}\right]
\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{-{{c}^{2}}+{2 \ a \ c}+{{b}^{2}}-{{a}^{2}}}, \:{-{{b}^{2}}+{{a}^{2}}}, \:{{{c}^{2}}-{{b}^{2}}-{2 \ a \ b}-{{a}^{2}}}, \: \right.
\
\
\displaystyle
\left.{{{c}^{2}}-{{b}^{2}}+{2 \ a \ b}-{{a}^{2}}}\right]](images/7945309919879201398-16.0px.png)
![\label{eq8}\begin{array}{@{}l}
\displaystyle
\left[{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 1}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 2}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 3}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 4}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}\right]
\label{eq8}\begin{array}{@{}l}
\displaystyle
\left[{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 1}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 2}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 3}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 4}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \: \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = -{\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{1}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{5}{4}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{5}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \: \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \: \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \: \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \: \mbox{\rm true} \right\}}\right)}\right]](images/4928799948130851967-16.0px.png)
![\label{eq9}\begin{array}{@{}l}
\displaystyle
\left[{\left[ - 4, \: - 2, \: - 1 \right]}, \:{\left[ - 2, \: - 2, \: - 1 \right]}, \:{\left[ 0, \: - 2, \: - 1 \right]}, \:{\left[ 2, \: - 2, \: - 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 4, \: - 2, \: - 1 \right]}, \:{\left[ -{\frac{5}{2}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{4}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ 0, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \:{\left[{\frac{5}{2}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{2}}, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ -{\frac{5}{4}}, \:{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[{\frac{5}{4}}, \:{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{2}}, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ - 4, \: 2, \: - 1 \right]}, \:{\left[ - 2, \: 2, \: - 1 \right]}, \:{\left[ 0, \: 2, \: - 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \: 2, \: - 1 \right]}, \:{\left[ 4, \: 2, \: - 1 \right]}, \:{\left[ - 4, \: - 2, \: 1 \right]}, \:{\left[ - 2, \: - 2, \: 1 \right]}, \:{\left[ 0, \: - 2, \: 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \: - 2, \: 1 \right]}, \:{\left[ 4, \: - 2, \: 1 \right]}, \:{\left[ -{\frac{5}{2}}, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{4}}, \: -{\frac{1}{2}}, \: 1 \right]}, \:{\left[ 0, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \: -{\frac{1}{2}}, \: 1 \right]}, \:{\left[{\frac{5}{2}}, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{2}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ -{\frac{5}{4}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ 0, \:{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[{\frac{5}{2}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ - 4, \: 2, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 2, \: 1 \right]}, \:{\left[ 0, \: 2, \: 1 \right]}, \:{\left[ 2, \: 2, \: 1 \right]}, \:{\left[ 4, \: 2, \: 1 \right]}\right]
\label{eq9}\begin{array}{@{}l}
\displaystyle
\left[{\left[ - 4, \: - 2, \: - 1 \right]}, \:{\left[ - 2, \: - 2, \: - 1 \right]}, \:{\left[ 0, \: - 2, \: - 1 \right]}, \:{\left[ 2, \: - 2, \: - 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 4, \: - 2, \: - 1 \right]}, \:{\left[ -{\frac{5}{2}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{4}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ 0, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \:{\left[{\frac{5}{2}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{2}}, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ -{\frac{5}{4}}, \:{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[{\frac{5}{4}}, \:{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{2}}, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ - 4, \: 2, \: - 1 \right]}, \:{\left[ - 2, \: 2, \: - 1 \right]}, \:{\left[ 0, \: 2, \: - 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \: 2, \: - 1 \right]}, \:{\left[ 4, \: 2, \: - 1 \right]}, \:{\left[ - 4, \: - 2, \: 1 \right]}, \:{\left[ - 2, \: - 2, \: 1 \right]}, \:{\left[ 0, \: - 2, \: 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \: - 2, \: 1 \right]}, \:{\left[ 4, \: - 2, \: 1 \right]}, \:{\left[ -{\frac{5}{2}}, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{4}}, \: -{\frac{1}{2}}, \: 1 \right]}, \:{\left[ 0, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \: -{\frac{1}{2}}, \: 1 \right]}, \:{\left[{\frac{5}{2}}, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{2}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ -{\frac{5}{4}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ 0, \:{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[{\frac{5}{2}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ - 4, \: 2, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 2, \: 1 \right]}, \:{\left[ 0, \: 2, \: 1 \right]}, \:{\left[ 2, \: 2, \: 1 \right]}, \:{\left[ 4, \: 2, \: 1 \right]}\right]](images/101241618880824326-16.0px.png)
![\label{eq10}\begin{array}{@{}l}
\displaystyle
\left[{\left[ - 5, \:{12}, \: -{35}, \: - 3 \right]}, \:{\left[ 3, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 5, \: 0, \: 1, \: -{15}\right]}, \:{\left[ -{2
1}, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ - 2, \: 6, \: - 8, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \: -{\frac{33}{1
6}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{12}, \: 6, \: - 3, \: - 8 \right]}, \:{\left[ - 2, \: 6, \: - 3, \: - 8 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \: -{\frac{3
3}{16}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{12}, \: 6, \: - 8, \: - 3 \right]}, \:{\left[ - 5, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ 3, \: 0, \: 1, \: -{15}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \:{\left[ - 5, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ -{21}, \:{12}, \: -{35}, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{21}, \:{12}, \: -{35}, \: - 3 \right]}, \:{\left[ - 5, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: 0, \: 1, \: -{15}\right]}, \:{\left[ - 5, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ -{12}, \: 6, \: - 8, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \: -{\frac{3
3}{16}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 6, \: - 3, \: - 8 \right]}, \:{\left[ -{12}, \: 6, \: - 3, \: - 8 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \: -{\frac{33}{1
6}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 6, \: - 8, \: - 3 \right]}, \:{\left[ -{21}, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ - 5, \: 0, \: 1, \: -{15}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \:{\left[ 3, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ - 5, \:{12}, \: -{3
5}, \: - 3 \right]}\right]
\label{eq10}\begin{array}{@{}l}
\displaystyle
\left[{\left[ - 5, \:{12}, \: -{35}, \: - 3 \right]}, \:{\left[ 3, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 5, \: 0, \: 1, \: -{15}\right]}, \:{\left[ -{2
1}, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ - 2, \: 6, \: - 8, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \: -{\frac{33}{1
6}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{12}, \: 6, \: - 3, \: - 8 \right]}, \:{\left[ - 2, \: 6, \: - 3, \: - 8 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \: -{\frac{3
3}{16}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{12}, \: 6, \: - 8, \: - 3 \right]}, \:{\left[ - 5, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ 3, \: 0, \: 1, \: -{15}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \:{\left[ - 5, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ -{21}, \:{12}, \: -{35}, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{21}, \:{12}, \: -{35}, \: - 3 \right]}, \:{\left[ - 5, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: 0, \: 1, \: -{15}\right]}, \:{\left[ - 5, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ -{12}, \: 6, \: - 8, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \: -{\frac{3
3}{16}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 6, \: - 3, \: - 8 \right]}, \:{\left[ -{12}, \: 6, \: - 3, \: - 8 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \: -{\frac{33}{1
6}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 6, \: - 8, \: - 3 \right]}, \:{\left[ -{21}, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ - 5, \: 0, \: 1, \: -{15}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \:{\left[ 3, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ - 5, \:{12}, \: -{3
5}, \: - 3 \right]}\right]](images/2745236201716964352-16.0px.png)