login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Submitted by : (unknown) at: 2007-11-17T22:30:42-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

This integral is elementary, but AXIOM returns the input as a formal integral. I thought this indicated a non-elementary result...

Messy, but works:

fricas
(1) -> )set output algebra on
integrate((1 + tan(x))^(1/3), x)
(1) +----------+ +---+ 3| +---+ (- \|- 3 - 1)\|\|- 1 - 1 * +----------+ 3+----------+ +---+ +---+3| +---+ log(2 \|tan(x) + 1 + (\|- 3 + 1)\|- 1 \|\|- 1 - 1 ) + +------------+ +---+ 3| +---+ (\|- 3 - 1)\|- \|- 1 - 1 * +------------+ 3+----------+ +---+ +---+3| +---+ log(2 \|tan(x) + 1 + (\|- 3 - 1)\|- 1 \|- \|- 1 - 1 ) + +------------+ +---+ 3| +---+ (- \|- 3 - 1)\|- \|- 1 - 1 * +------------+ 3+----------+ +---+ +---+3| +---+ log(2 \|tan(x) + 1 + (- \|- 3 - 1)\|- 1 \|- \|- 1 - 1 ) + +----------+ +---+ 3| +---+ (\|- 3 - 1)\|\|- 1 - 1 * +----------+ 3+----------+ +---+ +---+3| +---+ log(2 \|tan(x) + 1 + (- \|- 3 + 1)\|- 1 \|\|- 1 - 1 ) + +------------+ +------------+ 3| +---+ 3+----------+ +---+3| +---+ 2 \|- \|- 1 - 1 log(\|tan(x) + 1 + \|- 1 \|- \|- 1 - 1 ) + +----------+ +----------+ 3| +---+ 3+----------+ +---+3| +---+ 2 \|\|- 1 - 1 log(\|tan(x) + 1 - \|- 1 \|\|- 1 - 1 ) / 4

\label{eq1}\frac{{{\left(-{\sqrt{- 3}}- 1 \right)}\ {\root{3}\of{{\sqrt{- 1}}- 1}}\ {\log \left({{2 \ {\root{3}\of{{\tan \left({x}\right)}+ 1}}}+{{\left({\sqrt{- 3}}+ 1 \right)}\ {\sqrt{- 1}}\ {\root{3}\of{{\sqrt{- 1}}- 1}}}}\right)}}+{{\left({\sqrt{- 3}}- 1 \right)}\ {\root{3}\of{-{\sqrt{- 1}}- 1}}\ {\log \left({{2 \ {\root{3}\of{{\tan \left({x}\right)}+ 1}}}+{{\left({\sqrt{- 3}}- 1 \right)}\ {\sqrt{- 1}}\ {\root{3}\of{-{\sqrt{- 1}}- 1}}}}\right)}}+{{\left(-{\sqrt{- 3}}- 1 \right)}\ {\root{3}\of{-{\sqrt{- 1}}- 1}}\ {\log \left({{2 \ {\root{3}\of{{\tan \left({x}\right)}+ 1}}}+{{\left(-{\sqrt{- 3}}- 1 \right)}\ {\sqrt{- 1}}\ {\root{3}\of{-{\sqrt{- 1}}- 1}}}}\right)}}+{{\left({\sqrt{- 3}}- 1 \right)}\ {\root{3}\of{{\sqrt{- 1}}- 1}}\ {\log \left({{2 \ {\root{3}\of{{\tan \left({x}\right)}+ 1}}}+{{\left(-{\sqrt{- 3}}+ 1 \right)}\ {\sqrt{- 1}}\ {\root{3}\of{{\sqrt{- 1}}- 1}}}}\right)}}+{2 \ {\root{3}\of{-{\sqrt{- 1}}- 1}}\ {\log \left({{\root{3}\of{{\tan \left({x}\right)}+ 1}}+{{\sqrt{- 1}}\ {\root{3}\of{-{\sqrt{- 1}}- 1}}}}\right)}}+{2 \ {\root{3}\of{{\sqrt{- 1}}- 1}}\ {\log \left({{\root{3}\of{{\tan \left({x}\right)}+ 1}}-{{\sqrt{- 1}}\ {\root{3}\of{{\sqrt{- 1}}- 1}}}}\right)}}}{4}(1)
Type: Union(Expression(Integer),...)

Is it really elementary? --kratt6, Thu, 05 Apr 2007 15:04:01 -0500 reply
I'm not so sure whether this integral really is elementary. Mathematica gives


In[1]:= Integrate[(1 + Tan[x])^(1/3),x]<p>                                                          1/3
                        3     6     Log[-#1 + (1 + Tan[x]<a class=?) ] #1 RootSum?[2 - 2 #1 + #1 & , ----------------------------- & ]? 3 -1 + #1 Out[1]?= ------------------------------------------------------------- 2

In[2]:= ?RootSum? RootSum?[f, form]? represents the sum of form[x]? for all x that satisfy the polynomial equation f[x]? == 0. " title=" In[1]:= Integrate[(1 + Tan[x]?)^(1/3),x]

1/3 3 6 Log[-#1 + (1 + Tan[x]?) ] #1 RootSum?[2 - 2 #1 + #1 & , ----------------------------- & ]? 3 -1 + #1 Out[1]?= ------------------------------------------------------------- 2

In[2]:= ?RootSum? RootSum?[f, form]? represents the sum of form[x]? for all x that satisfy the polynomial equation f[x]? == 0. " class="equation" src="images/585158006443671166-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="816" height="1056"/>

Is the function "n-th root of some univariate polynomial" elementary?

Martin

typo in title --kratt6, Thu, 05 Apr 2007 15:04:40 -0500 reply
Name: #346 Returns format integration sign for (1 + tan(x))^(1/3), which is elementary => #346 Returns formal integration sign for (1 + tan(x))^(1/3), which is elementary

Status: open => closed




  Subject: (replying)   Be Bold !!
  ( 15 subscribers )  
Please rate this page: